1 / 37

Importance of Modeling & Simulation Throughout In-service Lifecycle Phase

Leigh Jarman Senior Reliability Engineer. Importance of Modeling & Simulation Throughout In-service Lifecycle Phase. Importance of Modeling and Simulation throughout In-service Lifecycle Phase. Presentation Outline Introduction

feryal
Download Presentation

Importance of Modeling & Simulation Throughout In-service Lifecycle Phase

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Leigh Jarman Senior Reliability Engineer Importance of Modeling & Simulation Throughout In-service Lifecycle Phase

  2. Importance of Modeling and Simulation throughout In-service Lifecycle Phase • Presentation Outline • Introduction • Maintenance strategy development and integration of change. • Case Study 1 • “Know Your Equipment” • Case Study 2 • “Predict Today & Forecast for Tomorrow” • Potential issues with in-service strategy simulation

  3. Introduction • How do we know that what we are doing and when we are doing it is right? • How do we produce a meaningful maintenance strategy?

  4. Example 1 JanuaryWeek 1Week 2 Week 3 Week 4FebruaryWeek 1Week 2Week 3Week 4March Week 1Week 2Week 3Week 4April Week 1Week 2Week 3Week 4 • Maintenance task 1 – • Function test valve • Weekly interval

  5. Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

  6. Maintenance Strategy Development • Maintenance strategy development can occur at any time during a project life cycle. • New Projects • Greater opportunity for total lifecycle cost saving. • Existing Projects • Greater opportunity for optimisation through use of historical data.

  7. Maintenance Strategy Development • Objective is to • Shifts the focus from fixing failures to preventing failures. • Achieve dependable asset performance that is responsive to organisational controls. • changes in the business climate, • changing priorities, • as failure patterns emerge, • as new technology becomes available.

  8. Maintenance Strategy Development • Simulation and forward predictions allow; • Likely failures are documented based on experience, local plant knowledge, industry guides, and historical records. • Maintenance tasks are selected to address likely failures and reduce the effects of failure. • Existing maintenance strategies can be imported and optimised. • Models are used to simulate decisions on the computer desktop prior to implementing in the field. • The effects of redundancy, resource costs, equipment ageing and repair times must be taken into account.

  9. Maintenance Strategy Development • Simulation and forward predictions allow optimization in; • Identification of critical items and risk. • Maintenance tasks at optimum frequencies. • resource allocation (spares, labour, equipment), • budgeting decisions

  10. Maintenance Strategy Development • Simulation and forecasting for new projects • Assumptions must be made for analysis; • Effects of failure, • Failure rates based on type of product and production rates, • Like equipment , • Experience & engineering judgement, • OEM & Industrial publications.

  11. Maintenance Strategy Development • Many software packages available to assist in maintenance strategy development and simulation. • Step through traditional 7 questions of RCM.

  12. Maintenance Strategy Development • 7 questions of RCM; • What is the function of the equipment / component? • What functional failures could occur? • What are the causes to each functional failure? • What happens when the failure occurs? • How does this failure matter, ie significance of the failure? • What should be done to predict or prevent the failure? • What should be done if no suitable task exist, i.e. RTF or redesign?

  13. Maintenance Strategy Development • How many questions and assumptions can change throughout the in-service phase of equipment life?

  14. Maintenance Strategy Development • Do these change? • What is the function of the equipment / component? • Does the equipment do the same as what it was designed? • Has the requirements changed? • What functional failures could occur? • How is not performing? • What are the causes to each functional failure? • Has new failures emerged? • Is it failing quicker than first estimated? Are the conditions of operation same as designed? • Has any engineering changes occurred to alter performance?

  15. Maintenance Strategy Development • Do these change? • How does the failure matter? • Are the environmental effects the same as designed? • Increase in community and media exposure? • Is production losses more costly? • What happens when the failure occurs? • Are the remedial tasks the same? • Is the resources the same cost and availability? • What should be done to predict or prevent the failure? • Can a new task be indentified? • Are new NDT or Condition Monitoring technologies available? • Refine OEM recommendations to site specific conditions? • Is it worth doing still?

  16. Maintenance Strategy Development • Systematic review of maintenance strategies during in-service phase of equipment life allows; • Failure data utilization to predict failures more accurately. • Update regularly based on changes in business environment, • Changes in labour/spares/equipment costs • Changes in effects (product costs and rates) • Maintenance strategy is dynamic and can be refined as business needs change.

  17. In-service Simulation Case Studies • 2 case studies; • “Know Your Equipment” • Simulation of actual failure data to understand equipment performance • “Predict Today & Forecast for Tomorrow” • Using in-service data to predict lifecycle costs

  18. Case Study 1 “Know Your Equipment” • Failures present an opportunity to learn something about the behavior of the component. • By analyzing and utilising failure data maintenance strategy decisions can be refined or challenged.

  19. Case Study 1 “Know Your Equipment” • Component “A” • Multiple installations. • Assumed wear out behavior, fixed time replacement required. • Analysis of failure history to challenge maintenance strategy, using Weibull Module within Availability Workbench.

  20. Case Study 1 “Know Your Equipment”

  21. Case Study 1 “Know Your Equipment” Characteristic life of 38818 hours with a shape curve of 0.80. – infant mortality Characteristic life of 31520 hours with a beta shape curve of 3.3. – wear out

  22. Case Study 1 “Know Your Equipment” Characteristic life of 17846 hours with a beta shape curve of 0.54. – infant mortality Characteristic life of 23946 hours with a beta shape curve of 1.1. – best when new (not quite random)

  23. In-service Simulation Case Studies Failure data is displaying three possible types of failure mode and data requires a more detailed investigation

  24. Case Study 1 “Know Your Equipment”

  25. Case Study 1 “Know Your Equipment” • Component “A” • Assumed wear out • Dominate failure type – Infant mortality. • Recommendation – complete Root Cause Analysis • Actions – • Root Cause Analysis completed. • Re-engineered issue from component.

  26. Case Study 2 “Predict Today & Forecast for Tomorrow” • Case study illustrates how in service failure data can affect maintenance strategy forecasting. • Use of this data to illustrate effect on strategy against change in business directions. • For simplicity will consider 1 failure mode on conveyor belt.

  27. Case Study 2 “Predict Today & Forecast for Tomorrow” • Consider “Conveyor belt fails due to wear” • Failure Effects – Production downtime • Assumed failure rate set at 7633 hours from assumed wear rate. • 7 MTBO values from analysis of historical records. • Corrective, planned and inspection maintenance tasks set. Assumed full belt replacement required with belt thickness testing inspection selected. • Simulation completed over 5 years.

  28. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation 1 • Complete inspection at current interval – 4 wkly using assumed wear rate.

  29. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation 2 • Optimise task interval based on current production and assumed wear rate.

  30. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation 3 • Optimise task interval based on failure data Characteristic life of 10220 hours with a beta shape curve of 1.66 – slight wear out, nearly random.

  31. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation 3 • Optimise task interval based on failure data

  32. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation 4 • Optimise task interval based on future production rates • Assume an increase on wear proportional to increase on tonnage, increase on utilisation and increase on availability. • Assumed factor is set to 1.62 • Assumed belt life reduction from 10 220 hrs to 6308 hrs.

  33. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation 4 • Optimise task interval based on future production rates

  34. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation 5 • Optimise task interval based on adjusted future production rate. (Factor = 1.30)

  35. Case Study 2 “Predict Today & Forecast for Tomorrow” • Maintenance Strategy Simulation Results

  36. Potential Issues With In-service Strategy Simulation • Main potential issue when trying to optimise maintenance strategy during in service phase; • Discipline – • To ensure that failures are adequately captured and documented as to learn from their occurrence and to prevent reoccurrence. • Data management – Work order historical data must be of quality otherwise improper judgement and conclusions will result. • To implement change – to implement recommended changes rather than resort to old practice • Resist urge to resort to “knee jerk” strategy - promote discussion rather than introduce new task for sake of it.

  37. Summary • In-service modeling and simulation is important as; • To ensure that failures are captured and suitably addressed. • Assumptions are accurate and a true reflection of current performance. • Maintenance tasks are continually challenged and refined against current performance. • Maintenance strategy is dynamic and can adapt to changing business objectives and climate.

More Related