1 / 17

Search vs. planning Situation calculus STRIPS operators

L11. Planning Agents and STRIPS. Search vs. planning Situation calculus STRIPS operators. Search in problem solving. a b c. Problem solution: A path through the state space tree State space search: Search is a traversal of the tree until the goals is reached.

fifi
Download Presentation

Search vs. planning Situation calculus STRIPS operators

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. L11. Planning Agentsand STRIPS • Search vs. planning • Situation calculus • STRIPS operators

  2. Search in problem solving a b c • Problem solution: • A path through the state space tree • State space search: • Search is a traversal of the tree • until the goals is reached. • State transitions is performed • by operators a b c

  3. Search in problem solving Difficulty using standard search algorithms Standard search algorithms seems to fail since the goal test is inadequate. What is “finish”?

  4. Search in problem solving Planning problem in situation calculus • Consider the same task get milk, bananas, and a cordless drill • A planning problem is represented in situation calculus by logical sentences that describe the three main parts of a problem. • Initial state: • At(home, S0)  Have(Milk, S0)  Have(Banana, S0)  Have(Drill, S0) • Goal state: •  s At(home, s)  Have(Milk, s)  Have(Bananas, s)  Have(Drill, s) • Operators: • a, s Have(Milk, Result (a,s)) [ (a=Buy(Milk)) At(Supermarket, s) •  (Have(Milk, s) a Drop(Milk) )] • Plan: • p = [Go(Supermarket), Buy(Milk), Buy(Bananas), Go(HWS), …]

  5. Search in problem solving Problem solving vs. planning • Representation of states • PS: Direct assignment of a symbol to each state • PL: Logic sentences • Representation of goals • PS: A goal state symbol • PL: Sentences that describe objective • Representation of actions • PS: Operators that transform one state symbol into another • PL: Addition/deletion of logic sentences describing world state • Representation of plans • PS: Path through state space • PL: Ordered or partially-orderedsequence of actions.

  6. Search in problem solving Advantages of Planning Systems • Uniform language for describing states, goals, actions, • and their effects. • Ability to add actions to a plan whenever they are needed, • not just in an incremental sequence from some initial state. • Ability to capture the fact that most parts of the world are • independent of most other parts. • It performs better for complex worlds over standard search • algorithm since searching space becomes huge when there • are many initial states and operators in standard search • algorithms.

  7. The Situation Calculus Wff - well formed formula • A goal can be described by a wff:  x On(x, B) • if we want to have a block on B • Planning: finding a set of actions to achieve a goal wff. • Situation Calculus (McCarthy, Hayes, 1969, Green 1969) • A Predicate Calculus formalization of states, actions, and their effects. • Sostate in figure can be described by: On(B, A)  On(A, C)  On(A, Fl)  Clear(B) we reify the state and include them as arguments • The atoms denotes relations over states.On(B, A, S0)  On(A, C, S0)  On(C, Fl, S0)  Clear(B, S0) • We can also have.x, y, s On(x, y, s)  (y = Fl) Clear(y, s) s Clear(Fl, s)

  8. state action Representing actions • Reify the actions: denote an action by a symbol • actions are functions • move(B,A,Fl): move block B from block A to Fl • move (x,y,z) - action schema • do: A function constant, do denotes a function that maps actions and states into states • Express the effects of actions. • Example: (on, move) (expresses the effect of move on On) • positive effect axiom:

  9. Effect axioms for (clear, move) move(x, y, z) matching? precondition are satisfied with B/x, A/y, S0/s, F1/z what was true in S0 remains true figure 21

  10. STRIPS: describing goals and state STRIPS: STanford Research Institute Planning System • Basic approach in GPS (general Problem Solver): • Find a “difference” (Something in G that is not provable in S0) • Find a relevant operator f for reducing the difference • Achieve precondition of f; apply f; from resultant state, achieve G.

  11. STRIPS planning • STRIPS uses logical formulas to represent the states • S0, G, P, etc: • Description of operator f:

  12. A STRIPS planning example • On(B,A) • On(A,C) • On(C,F1) • Clear(B) • Clear(Fl) • The formula describes a set of world states • Planning search for a formula satisfying a goal description • On(A, C) • On(C, Fl) • On(B, Fl) • Clear(A) • Clear(B)

  13. STRIPS Description of Operators • A STRIPS operator has 3 parts: • A set, PC - preconditions • A set D - the delete list • A setA - the add list • Usually described by Schema: Move(x,y,z) • PC: On(x,y) and On(Clear(x) and Clear(z) • D: Clear(z) , On(x,y) • A: On(x,z), Clear(y), Clear(F1) • A state S1 is created applying operator O by adding A and deleting D from S1.

  14. Example: The move operator

  15. Example1: The move operator G S0  f(P)->G S0->P    x/B, y/A, z/Fl x/B, y/A, z/Fl   On(x,y) Clear(x) Clear(z) f: move(x,y, z) add: On(x,z), Clear(y) del: On(x,y), Clear(z) On(x,z) Clear(x) Clear(y) P: f(P):

  16. ABC Example1: The move operator + Clear(F2) G S0  f(P)->G S0->P    x/B, y/A, z/Fl x/B, y/A, z/Fl   On(x,y) Clear(x) Clear(z) f: move(x,y, z) add: On(x,z), Clear(y) del: On(x,y), Clear(z) On(x,z) Clear(x) Clear(y) P: f(P):

  17. Tree representation S0: On(B,A) On(A,C) On(C,F1) Clear(B) Clear(Fl) G0: On(A, C) On(C, Fl) On(B, Fl) Clear(A) Clear(B) S0->G0 S0->G1 pre: On(B, A) Clear(B) Clear(Fl) G1->S1 Move(B, A Fl) S1->G0

More Related