1 / 52

Applications of Mathematics in Chemistry

Applications of Mathematics in Chemistry. Yingbin Ge Department of Chemistry Central Washington University. Some terms that you may see everyday. Single-Variable Calculus Multi-Variable Calculus Differential Equations Complex Functions Group Theory Probability and Statistics

filia
Download Presentation

Applications of Mathematics in Chemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Applications of Mathematics in Chemistry Yingbin Ge Department of Chemistry Central Washington University

  2. Some terms that you may see everyday • Single-Variable Calculus • Multi-Variable Calculus • Differential Equations • Complex Functions • Group Theory • Probability and Statistics • Linear Algebra

  3. Some terms that chemists see everyday • Inorganic Chemistry • Organic Chemistry • Biological chemistry • Analytical Chemistry • Physical Chemistry • Quantum Chemistry

  4. What’s in common • Inorganic Chemistry • Organic Chemistry • Biochemistry • Analytical Chemistry • Physical Chemistry • Quantum Chemistry • Single-Variable Calculus • Multi-Variable Calculus • Differential Equations • Complex Functions • Group Theory • Probability and Statistics • Linear Algebra

  5. The difference • The life of a quantum chemist is much easier than that of a mathematician. • We only solve one equation, the Schrödinger equation:

  6. For a system with constant energy, If the system is one-dimensional,

  7. The equation becomes time-independent: Or is the kinetic energy operator; V(x)is the potential energy.

  8. If the potential energy is 0, Or • where

  9. The general solution is for • The energy of the particle is E; the magnitude of the momentum is . • The direction of the momentum is probabilistic; the probabilities are proportional to |A+|2 and |A-|2.

  10. What if we put a particle in a box?

  11. The particle cannot escape from the box. To satisfy the boundary conditions, , where n = 1, 2, 3, …

  12. Application 1: Quantum Teleportation

  13. Application 1: Quantum Teleportation We insert a barrier and split the box into halves. 14

  14. Application 1: Quantum Teleportation 50% 50% ~400, 000 km On the Moon On Earth What will happen if we open the box on Earth? 15 15

  15. Application 2: Conjugated Dyes

  16. Application 3: Quantum Dots ~2nm Quantum dots with different sizes Cellular imaging

  17. What if the energy barrier is finite?

  18. Tunneling Effect More prominent Hardly noticeable

  19. Application 4. Scanning Tunneling Microscope http://www.ieap.uni-kiel.de/surface/ag-kipp/stm/images/stm.jpg

  20. Application 4. Scanning Tunneling Microscope http://prl.aps.org/50years/timeline/Scanning%20tunneling%20microscope http://infiniflux.blogspot.com/

  21. How do chemists identify unknown chemicals? • UV-Vis Spectrometry (Conjugated Dyes) • Infrared Spectrometry • Raman Spectroscopy • Nuclear Magnetic Resonance Spectrometry • Mass Spectrometry • All above techniques requires knowledge in mathematics.

  22. IR spectrum of hydrogen chloride • HCl is a diatomic molecule; H and Cl are connected by a single bond. • The bond can be approximated as a harmonic oscillator.

  23. The first two vibrational states

  24. The first two vibrational states The actual vibrational frequencies are ~1014 cycles/second.

  25. Application 5. Infrared Spectroscopy • Each molecule has a unique IR spectrum. • My favorite molecule: Vanillin.

  26. Not all molecules absorb IR light. • For example, oxygen (O=O) do not absorb IR photons. • The IR absorption intensity is proportional to the squared modulus of the transition dipole moment:

  27. Group theory in IR spectroscopy Ethene, C2H4, adopts a D2h point group.

  28. Vibrations of Ethene • Ethene, C2H4, has 6 atoms and thus 18 motions. • 3 are translational motions. • 3 are rotational motions. • 12 are vibrations, some are IR active, others not. • If you know ethene’s point group and the symmetry labels for the vibrational modes, then it’s easy to predict which modes will be IR active.

  29. Vibrations of Water • Water, has 3 atoms and thus 9 motions. • 3 translational motions. • 3 rotational motions. • 3 vibrational modes. • What is the point group?

  30. Point Group Analysis If the symmetry label corresponds to x, y, or z, then its 0  1 transition will be IR active. The 2 A1 symmetry and 1 B2 symmetry vibrational modes of water are IR active.

  31. Application 6: Measuring bond length • How do chemists measure the bond length (~10-10 m) of a molecule? • Solve the Schrödinger equation for the 3-D rotation of the molecule:

  32. HCl IR Spectrum

  33. Electronic structure of a H atom

  34. Schrodinger Equation in Polar Coordinates The second derivatives of Ψ with respect to x, y, and z consist of 17, 17, and 7 terms. Fortunately, most terms can be cancelled or combined:

  35. Selected atomic orbitals of H

  36. Application 7: Neon Lights from Electron Transitions of Atoms

  37. Electronic structure of multi-electron systems • Wavefunctions that describe electrons must be anti-symmetric. • Wave functions can be expressed in a Slater determinant. http://kf-lin.elf.stuba.sk/~ballo/piatok/prezentacia/hartree-fock/hf_method.html

  38. Hartree-Fock theory http://kf-lin.elf.stuba.sk/~ballo/piatok/prezentacia/hartree-fock/hf_method.html

  39. Exact Solution

  40. Application 8. Protein folding and drug design.Proteins are long chains of amino acids.

  41. Molecular dynamics of protein folding http://www.ks.uiuc.edu/images/ofmonth/2008-05/villin-folding-process.png

  42. Molecular Dynamics • Given the initial values of force, velocity, and position for each atom, we can predict the force, velocity, and position for each atom at the first fs(10-15 sec), the second fs, and any other time over the course of MD. • Position can be expanded in a Taylor expansion: … • Velocity and acceleration can be obtained similarly.

  43. Molecular Dynamics:Predictor-Corrector Algorithm Position, velocity, and acceleration are first predicted using the truncated Taylor Expansion

  44. Molecular Dynamics:Predictor-Corrector Algorithm Acceleration is then corrected : Position, velocity, and acceleration are then updated accordingly. δt is often set to 10-15 sec.

  45. Molecular dynamics of protein folding http://www.ks.uiuc.edu/images/ofmonth/2008-05/villin-folding-process.png

  46. A drug molecule binds to a protein enzyme http://martin-protean.com/protein-structure.html

  47. Questions? • Inorganic Chemistry • Organic Chemistry • Biological chemistry • Analytical Chemistry • Physical Chemistry • Quantum Chemistry • Single-Variable Calculus • Multi-Variable Calculus • Differential Equations • Complex Functions • Group Theory • Probability and Statistics • Linear Algebra

More Related