1 / 6

An equation remains true when both sides are operated on in the same way:

An equation remains true when both sides are operated on in the same way:. 1 + 2 = 3. + 4. + 4. 7 = 7. Be careful: 1 + 2 x 4 = 3 x 4 Is NOT TRUE. 1 + 2 = 3. - 4. - 4. -1 = -1. ( 1 + 2 ) = 3. x 4. x 4. 12 = 12. But: 1 x 4 + 2 x 4 = 3 x 4 Is TRUE.

finn-potts
Download Presentation

An equation remains true when both sides are operated on in the same way:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An equation remains true when both sides are operated on in the same way: 1 + 2 = 3 + 4 + 4 7 = 7 Be careful: 1 + 2 x 4 = 3 x 4 Is NOT TRUE 1 + 2 = 3 - 4 - 4 -1 = -1 ( 1 + 2 ) = 3 x 4 x 4 12 = 12 But: 1 x 4 + 2 x 4 = 3 x 4 Is TRUE ( 1 + 2 ) = 3 4 4 0.75 = 0.75 Designed by Lukas van Veen

  2. Find n in the following equation : n + 3 = 7 4 Guess How do I find the answer using algebra? n + 3 = 7 + 3 I want an answer in the form n = …. n + 3 = 7 - 3 - 3 I must remove +3 n + 0 = 4 n = 4

  3. There is a quicker way to solve the same equation : 1 + 2 = 3 - 2 Move + 2 to the other side and change its sign n+ 3 = 7 - 3 Move + 3 to the other side and change its sign n = 4 Designed by Lukas van Veen

  4. Solve the following equations : Move – 0.75 to the other side and change its sign m- 0.75 = 0.875 + 0.75 m = 1.625 Move – 4.7 to the other side and change its sign - 4.7 – h = 7.8 + 4.7 – h = 12.5 Beware: I want h, NOT -h – h = 12.5 - Change ALL signs Designed by Lukas van Veen

  5. Solve the equation 4n = 12 Remove 4 by dividing both sides by 4 4n = 12 4 4 n= 3 Solve the equation Remove 3 by multiplying both sides by 3 x 3 x 3 Designed by Lukas van Veen

  6. Solve the equation 2n + 5 = 11 Move 5 to the other side and change its sign Remove 2 by dividing both sides by 2 2 n + 5 = 11 - 5 2 n= 6 2 2 Solve the equation n = 3 - 4 - 3 - 3 m = 5 Designed by Lukas van Veen

More Related