1 / 26

APOHN: Subnetwork Layering to Improve TCP Performance over Heterogeneous Paths

April 4, 2006. APOHN: Subnetwork Layering to Improve TCP Performance over Heterogeneous Paths. Dzmitry Kliazovich , Fabrizio Granelli, University of Trento, Italy. Giovanni Pau, Mario Gerla University of California, Los Angeles. Presentation Outline. TCP/IP in Heterogeneous Networks

fionan
Download Presentation

APOHN: Subnetwork Layering to Improve TCP Performance over Heterogeneous Paths

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. April 4, 2006 APOHN:Subnetwork Layering to Improve TCP Performance over Heterogeneous Paths Dzmitry Kliazovich, Fabrizio Granelli, University of Trento, Italy Giovanni Pau, Mario Gerla University of California, Los Angeles

  2. Presentation Outline • TCP/IP in Heterogeneous Networks • APOHN Architecture • Techniques, Protocol, and Security • Performance Evaluation • In Satellite + Wireless LAN Network • Conclusions and Future Potential Dzmitry Kliazovich (klezovic@dit.unitn.it)

  3. Background • Nowadays Networks (Heterogeneous) • TCP/IP protocol suite • Wireless, Satellite links • Terminal Mobility • Limited Bandwidth • Large Propagation Delays • Signal Fading • High Error Rates (10-3 – 10-1) • Designed in late 70s (ARPANET) • Strong Hierarchical structure • Static Routing • Stable Connectivity • Small Propagation Delays • Low Error Rates (BER: 10-8 – 10-6) Dzmitry Kliazovich (klezovic@dit.unitn.it)

  4. TCP/IP Improvements • Modify TCP bringing desired behavior • Examples: TCP Westwood, TCP-DOOR, etc. • Drawbacks: Difficulty to maintain E2E semantics, requires modification of standardized and widely implemented TCP/IP stack Transparent Adaptation • Hide from TCP undesirable physical characteristics • Examples: ARQ and FEC at the link layer • Drawback: Not all the characteristics can be compensated in transparent way TCP Modification Dzmitry Kliazovich (klezovic@dit.unitn.it)

  5. TCP/IP Semantics Connection Service for Applications Connect Network Nodes TCP TCP Connect Neighbor Nodes Network (IP) Network (IP) Link Link Physical Physical Dzmitry Kliazovich (klezovic@dit.unitn.it)

  6. TCP TCP Network (IP) Network (IP) TCP/IP Semantics • Heterogeneous Network? Subnetwork Subnetwork Link Link Physical Physical Dzmitry Kliazovich (klezovic@dit.unitn.it)

  7. APOHN Architecture Dzmitry Kliazovich (klezovic@dit.unitn.it)

  8. APOHN Architecture • Optimize Subnetwork Communications • Subnetwork Protocols (SBP) • Split-Connection at Subnetwork Layer • Preserve End-to-end Transport Layer • No Changes for TCP/IP OS Implementation Dzmitry Kliazovich (klezovic@dit.unitn.it)

  9. Protocol Booster • Buffer TCP packets • Control TCP with Receiver Advertise windows (rwnd) • E2E Reliability: keep a packet in buffer until it’s E2E acknowledged • Protocol Booster – Transparent interface between TCP and Subnetwork layers D. Feldmeier at el., “Protocol boosters,” IEEE JSAC, vol. 16, no. 3, pp. 437 – 444, 1998. Dzmitry Kliazovich (klezovic@dit.unitn.it)

  10. Protocol Booster • Implemented at Sender Node • Protocol Booster completely disables TCP flow control mechanism without direct modifications on Transport layer • TCP becomes a controlled source of packet data Dzmitry Kliazovich (klezovic@dit.unitn.it)

  11. Subnetwork Flow Multiplexing • Rate-based or Window-based flow control at Subnetwork layer • Results in TCP flow speed up: no need to probe the capacity with Additive Increase Multiplicative Decrease (AIMD) • Network Utilization Increase Dzmitry Kliazovich (klezovic@dit.unitn.it)

  12. Related Works • Delay-Tolerant Network (DTN) • Overlay network • Adds Bundle layer above TCP • E-mail style communications • Drawbacks • Modifies TCP/IP • Requires dedicated (overlay) nodes • Router nodes process whole protocol stack • Can not handle delay sensitive traffic Dzmitry Kliazovich (klezovic@dit.unitn.it)

  13. Related Works • Performance Enhancement Proxy (PEP) Dzmitry Kliazovich (klezovic@dit.unitn.it)

  14. Related Works • Performance Enhancement Proxy (PEP) • Designed for links or Subnetworks where TCP/IP performs poor • Typically Satellite links • Commonly Split-Connection approach • End-to-end connection is split into two or more connections • Use Optimized (non-TCP/IP) Protocol over aProblematic Link • Drawbacks • End-to-end Semantics not prevented • Large Processing + Buffer Overhead • Inability to Handle IPSec Dzmitry Kliazovich (klezovic@dit.unitn.it)

  15. Secure Communications • Split-Connection on Transport Layer (like PEP) can not support IPSec • Multilayer IP Security (by Zhang at el.) as an adaptation of IPSec for split-connection PEPs • Divide network in the number of Zones (Subnetworks) • Encrypt for every zone (not End-to-end) Dzmitry Kliazovich (klezovic@dit.unitn.it)

  16. Secure Communications • APOHN IPSec Support • End-to-end IPSec (RFC 2401) • Additional Subnetwork Security (Optional) Dzmitry Kliazovich (klezovic@dit.unitn.it)

  17. Performance Evaluation • Simulated network: Satellite + Wireless LAN • Distributed Communications with no fixed infrastructure • Disaster Recovery, Military Applications Dzmitry Kliazovich (klezovic@dit.unitn.it)

  18. Performance Evaluation • APOHN Subnetwork Protocols • Satellite Transport Protocol (STP) over Satellite Link • LLE-TCP (ACK suppression) over WLAN Dzmitry Kliazovich (klezovic@dit.unitn.it)

  19. Performance Evaluation • Ns-2 Simulation Scenario • Satellite Link: 20 Mb/s, 300 ms downstream; 6 Mb/s, 300 ms upstream • Wireless LAN Link: IEEE 802.11b (PHY – 11 Mb/s) Dzmitry Kliazovich (klezovic@dit.unitn.it)

  20. Performance Evaluation • Single-Flow Scenario • TCP Reno SACK triggers multiple timeouts • SaTPEP is limited by WLAN bottleneck Dzmitry Kliazovich (klezovic@dit.unitn.it)

  21. Performance Evaluation • Congestion Window Evolution Loss Detected with DupACKs Loss Not Detected, Timeout Dzmitry Kliazovich (klezovic@dit.unitn.it)

  22. Performance Evaluation • Bottleneck Buffer Multiple Overflow Drops Dzmitry Kliazovich (klezovic@dit.unitn.it)

  23. Performance Evaluation • Multi-Flow Scenario Dzmitry Kliazovich (klezovic@dit.unitn.it)

  24. Performance Evaluation • Cumulative Throughput Dzmitry Kliazovich (klezovic@dit.unitn.it)

  25. Conclusions and Future Work • Need for TCP/IP Adaptation to Heterogeneous Network Environment • APOHN Architecture adds Subnetwork Layer to the protocol stack • Optimized Subnetwork Protocols, Flow Multiplexing, and Protocol Speedup are keys for Performance enahncement • IPSec is Supported Dzmitry Kliazovich (klezovic@dit.unitn.it)

  26. Thank you! Dzmitry Kliazovich (klezovic@dit.unitn.it)

More Related