1 / 6

Advantages of Multivariate Analysis

Advantages of Multivariate Analysis. Close resemblance to how the researcher thinks. Easy visualisation and interpretation of data. More information is analysed simultaneously, giving greater power. Relationship between variables is understood better.

fionnula
Download Presentation

Advantages of Multivariate Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Advantages of Multivariate Analysis • Close resemblance to how the researcher thinks. • Easy visualisation and interpretation of data. • More information is analysed simultaneously, giving greater power. • Relationship between variables is understood better. • Focus shifts from individual factors taken singly to relationship among variables.

  2. Definitions • Independent (or Explanatory or Predictor) variable always on the X axis. • Dependent (or Outcome or Response) variable always on the Y axis. • In OBSERVATIONAL studies researcher observes the effects of explanatory variables on outcome. • In INTERVENTION studies researcher manipulates explanatory variable (e.g. dose of drug) to influence outcome

  3. Definitions - II • Scatter plot helps to visualise the relationship between two variables. • The figure shows a scatter plot with a regression line. For a given value of X there is a spread of Y values. The regression line represents the mean values of Y.

  4. Definitions - III • INTERCEPT is the value of Y for X = 0. It denotes the point where the regression line meets the Y axis • SLOPE is a measure of the change in the value of Y for a unit change in X. Y axis Slope Intercept X axis

  5. Basic Assumptions • Y increases or decreases linearly with increase or decrease in X. • For any given value of X the values of Y are distributed Normally. • Variance of Y at any given value of X is the same for all value of X. • The deviations in any one value of Y has no effect on other values of Y for any given X

  6. The Residuals • The difference between the observed value of Y and the value on the regression line (Fitted value) is the residual. • The statistical programme minimizes the sum of the squares of the residuals. In a Good Fit the data points are all crowded around the regression line. Residual

More Related