380 likes | 493 Views
2008/12/25 RCNP. G 行列理論に基づくバリオン - 核間相互作用の導出. 都留文科大学 山本 . 共同研究者 古本 櫻木 (大阪市大). G-matrix interaction を使うことの意味 核力に基づく理解 核模型における有効相互作用. 核内での核力の特徴が G-matrix を通して現れる. たとえば、 nuclear saturation property density-dependent effective interaction central/LS/tensor components.
E N D
2008/12/25 RCNP G行列理論に基づくバリオン-核間相互作用の導出 都留文科大学 山本 共同研究者 古本 櫻木 (大阪市大)
G-matrix interactionを使うことの意味 核力に基づく理解 核模型における有効相互作用 核内での核力の特徴がG-matrixを通して現れる たとえば、 nuclear saturation property density-dependent effective interaction central/LS/tensor components
T = V+VPT = V+VPV+VPVPV+ ・・・ Ladder sum Pに多体効果を入れるとTがGになる 媒質中での2体散乱
Nuclear saturation given by various NN potentials (G-matrix calculations) Gap choice E/Aで4~5 MeVの差 これは大きい Continuous choice Repulsive three-body effect in high-density region is necessary for nuclear saturation
Baldo et al. arXiv:astro-ph/0312446 4ρ0 LOBT(C.C.) は高密度まで信頼できる !!!
G行列理論に基づくnuclear saturation LOBT with continuous choice is reliable up to high density Role of Three-Body Interaction (TBA+TBR) is essential for saturation problem
For nuclear saturation, role of TBF is indispensable ! Typically Fujita-Miyazawa diagram ●Attraction at low densities ●Repulsion at high densities Phenomenological TBR by Illinois group for instance
TBA Derivation of effective two-body potential from TBF by Kasahara, Akaishi and Tanaka Fujita-Miyazawa diagram
TBRは実在する! Saturation curve (incompressibility)に不可欠 中性子星の最大質量 ・・・ その起源は? Pure phenomenological Meson exchange diagrams Relativistic (Z-diagram) ・・・
Phenomenological modeling of Three-Body Repulsion in ESC04 Necessary for maximum mass of neutron star Universal among NNN, NNY, NYY… Three-body force due to triple-meson correlation Reduction of meson mass in medium MV(ρ)=MV exp(-αρ) for vector mesons Medium-Induced Repulsion
TBA Baldo TBR Similar curve is obtained
Maximum-mass problem of neutron stars Importance of universal TBR
G は ωと kF(Qを通じて) に依存する モデル化して有限系に適用 (nuclear-matter G-matrix + LDA) 例えば Density-Dependent interaction (ω-depをkF-depに吸収する) 散乱問題への応用では G(r; kF, Ein)
OMP derived from G-matrix interaction incident energy ω ω-rearrangement Imaginary part
CEG83 Old calculation by Kasahara-Akaishi-Tanaka
From CEG83 to CEG07 Modern NN interaction model ESC Continuous choice for intermediate spectra Including TBA (Fujita-Miyazawa) + TBR Up to higher partial waves on the basis of saturation mechanism
16O + 16O elastic scattering E/A = 70 MeV Effect of three-body force T.Furumoto, Y. Sakuragi and Y. Yamamoto, (Submitted to Phys.Rev.C rapid communication)
同じ処方箋で hyperon-nucleus potentialを攻めてみよう
Nijmegen soft-core models (NSC89/97, ESC04/07) Origin of cores pomeron ω meson Repulsive cores are similar to each other in all channels Different from Quark-model core Tamagaki’s Quark Pauli-forbidden states ? ハイパー核で領域Ⅲを見れるか? 原子核現象を通じて核力の領域IIIの異なる modelingを区別することはできなかった
ESC04 modeling PS, S, V, AV nonets not taken (ππ),(πρ),(πω),(πη),(σσ) +(πK),(πK*)・・・ strangeness exchange ESC07 PS-PS exchange small spin-orbit interaction Quark-model-like core
∑-Nucleus potentials U∑ Intermediate states in (π,K) reactions ∑-nucleus scattering ・・・・・ Interesting problems repulsive ? isospin-dependence spin-orbit interaction imaginary parts (scattering & conversion)
Are repulsive ∑-potentials obtained from Nijmegen models? NHC-F ok but… No(maybe)standard NSC/ESC modeling in spite of elaborate works by Rijken Import the feature of quark model !
various Nijmegen Models 21S023S141S043S1 sum Fss 6.1 -20.2 -8.8 48.2 +9.8 fss2 6.7 -23.9 -9.2 41.2 +7.5 QM-based models
Feature of QM core K. Shimizu, S. Takeuchi and A.J. Buchmann, PTP, Suppl. 137(2000) Almost Pauli-forbidden states
Adjust V[51 Pauli-forbidden state exist in V[51]
Recent Nijmegen approach ESC core = pomeron + ω Assuming “equal parts” of ESC and QM are similar to each other Almost Pauli-forbidden states in [51] are taken into account by changing the pomeron strengths for the corresponding channels gPsqrt(2.5) gP ESC07 models
Optical potential ∑-nucleus folding potential derived from complex G-matrix G∑N(r; E, kF) In N-nucleus scattering problem physical observables can be reproduced with “no free parameter”
relation Effective Mass and E-dependence of U∑ with ESC07 If m∑* > 1 then U’∑ < 0
ESC07 Pauli-forbidden states U∑(real) cancelingが効く W∑には”2乗和”で効く Wscattが大きい理由
Improved LDA by JLM Phys. Rev. C10 (1974) 1391 simple LDA : U(ρ(r),E)
NW*Uimag NW=0.65 Same as NA case In general, G-matrix overestimates Uimag as seen in N-nucleus systems
Summary G-matrix method (nuclear matter approach) is very powerful to describe N-nucleus and Nucleus-nucleus scattering observables starting from realistic NN interaction models On the same ground ∑-nucleus potentials are derived from realistic YN interaction models and compared successfully with (π,K) data Challenging physics : Universal TBR Pauli-forbidden states in ∑N