330 likes | 866 Views
2012-6-3. Pattern Recognition and Machine Learning. 2. ??. ???? vs. ??????????(Probabilistic Discriminative Models)??????(Laplace Approximation)???Logistic??(Bayesian Logistic Regression). 2012-6-3. Pattern Recognition and Machine Learning. 3. ????. ??????,????????:???(Inference step);Determi
E N D
1. Linear Models for Classification (2)(Chap. 4 of PRML)
Presented by:
Zhiyang Wang
2009-06
2. 2012-6-3 Pattern Recognition and Machine Learning 2 ?? ???? vs. ????
??????(Probabilistic Discriminative Models)
??????(Laplace Approximation)
???Logistic??(Bayesian Logistic Regression)
3. 2012-6-3 Pattern Recognition and Machine Learning 3 ???? ??????,????????:
???(Inference step);
Determine either or .
???(Decision step):
For given x, determine optimal t.
4. 2012-6-3 Pattern Recognition and Machine Learning 4 ???? vs. ???? ????:
Model
Use Bayes theorem
????:
Model directly
5. 2012-6-3 Pattern Recognition and Machine Learning 5 ?????? ????
????????? ,????????? ?????
???????
???????(?????????? ??????????)
???????(basis functions)
6. 2012-6-3 Pattern Recognition and Machine Learning 6 ???(1) ?????,??????????????
?????????
????????
????????
????,?????(overlap)?????,?????(Trade-off)?
7. 2012-6-3 Pattern Recognition and Machine Learning 7 ???(2)
8. 2012-6-3 Pattern Recognition and Machine Learning 8 Logistic sigmoid ??(1) Logistic sigmoid ??:
9. 2012-6-3 Pattern Recognition and Machine Learning 9 Logistic sigmoid ??(2) ??????,????????????:
10. 2012-6-3 Pattern Recognition and Machine Learning 10 Logistic ??(1) ??M??????,????
????:M
???????????:2M (means) + M(M+1)/2(covariance matrix) + 1(class prior)
???over-fitting
????:?????( regularization )
?? :??????????(MAP)??
11. 2012-6-3 Pattern Recognition and Machine Learning 11 Logistic ??(2) ??MLE??Logistic?????
12. 2012-6-3 Pattern Recognition and Machine Learning 12 Iterative Reweighted LS(1) ??logistic sigmoid ??????,Logistic???????( closed-form solution )?
????????
????????,???????
???Newton-Raphson??
Newton-Raphson??:?????????????
13. 2012-6-3 Pattern Recognition and Machine Learning 13 Iterative Reweighted LS(2) ???????????,??????
??Logistic????,???IRLS?????
14. 2012-6-3 Pattern Recognition and Machine Learning 14 ??Logistic?? ???? ? sigmoid??
???? ? softmax??
???????????,??????IRLS???????
15. 2012-6-3 Pattern Recognition and Machine Learning 15 Probit?? Probit??
16. 2012-6-3 Pattern Recognition and Machine Learning 16 Probit??(1) Probit??
17. 2012-6-3 Pattern Recognition and Machine Learning 17 Probit??(2) ???logistic??,??probit?????????(activation function)?
????????( outliers )????;???????????????
Logistic??:
Probit??:
????????:
18. 2012-6-3 Pattern Recognition and Machine Learning 18 Laplace??(1) ??Logistic??????????????,????????,????????
Laplace??: ?????????(????)
????????(mode)????Laplace??
19. 2012-6-3 Pattern Recognition and Machine Learning 19 Laplace??(2) ????:
???(mode)???,??Laplace??;
????:
20. 2012-6-3 Pattern Recognition and Machine Learning 20 Laplace??(3) ???????:
????,??????(???????)
?????,??????
21. 2012-6-3 Pattern Recognition and Machine Learning 21 Laplace??(4)
22. 2012-6-3 Pattern Recognition and Machine Learning 22 ???Logistic??(1) Logistic???,???????sigmoid?????,????
??Laplace??????
????
????:??probit????sigmoid??
23. 2012-6-3 Pattern Recognition and Machine Learning 23 ???Logistic??(2) ?????????????
??:
????:
24. 2012-6-3 Pattern Recognition and Machine Learning 24 ???Logistic??(3) ????
25. 2012-6-3 Pattern Recognition and Machine Learning 25 ???Logistic??(4) ??probit????sigmoid??
26. 2012-6-3 Pattern Recognition and Machine Learning 26 ?? ????,??? ??
??????????????????,????
Logistic????IRLS?????;
Probit??
Laplace????????
???Logistic??
27. 2012-6-3 Pattern Recognition and Machine Learning 27 ??!