250 likes | 286 Views
Explore key rheological phenomena such as shear thinning, time-dependent modulus, and normal stresses in shear. Learn about stress relaxation, Maxwell element, dynamic moduli, and comply with polymer solutions, gels, and melts.
E N D
Goal: Understand Principles of Rheology: stress = f (deformation, time) Key Rheological Phenomena • shear thinning (thickening) • time dependent modulus G(t) • normal stresses in shear N1 • extensional > shear stress hu> h • NeoHookean: Newtonian: t = h2D
Outline • Definitions • Stress relaxation • Maxwell element • Dynamic moduli • Compliance • Polymer solutions, gels, and melts
Definitions Stress: t Strain: g Strain rate: g (shear) modulus: G = t / g viscosity: h = t / g stress relaxation modulus: G(t,g) = t (t,g) / g linear response: g small enough so that G is independent of g log G t t log t
Limiting cases t Hookean g time time t t Newtonian viscoelastic solid viscoelastic liquid time time
Maxwell Element Go ho G(t) t
Dynamic shear modulus Elastic “storage” modulus, viscous “loss” modulus, loss tangent
Maxwell element wl Limiting slopes: low w, G’ ~ w2 , G” ~ w high w, G’ ~ w0 , G” ~ w-1
Complex notation Dynamic viscosity:
Creep compliance t to Maxwell element: time J Jeo Jeo General LVE: 1/h time
Outline • Definitions • Stress relaxation • Maxwell element • Dynamic moduli • Compliance • Polymer solutions, gels, and melts
Meet the suspects 6 typical materials Dilute Polymer Solution Entangled Polymer (M/S) Surfactant Solution Gel Emulsion Suspension
G’, G” for a single flexible chain in a solvent Bead-spring model Random coil P. E. Rouse, Jr. J. Chem. Phys. 21, 1872 (1953) B. H. Zimm, J. Chem. Phys. 24, 269 (1956) www.joogroup.com/graphics/single_poly_cg.jpg
G’, G” for a high M chain in an oligomer G” always > G’ = G”/ “Internal modes” “Terminal” regime Longest relaxation time D. Tan, unpublished results
G’, G” for a single chain in a theta solvent Sahouani and Lodge, Macromolecules, 25, 5632 (1992)
Polyisoprene: an entangled melt New solid-like regime J. C. Haley, Ph. D. Thesis, Univ. Minn., (2005)
Worm-like micelles The “Gel” Samples Can be Interpreted Simply 4 nm Bernheim-Groswasser, A., Zana, R., and Talmon, Y., J. Phys. Chem. B104, 4005 (2000).
Maxwellian response The “Gel” Samples Can be Interpreted Simply 100 mmol cetyl pyridinium chloride 60 mmol sodium salicylate 100 mmol sodium chloride Candau et al., J. Phys. IV, 3, 197 (1993).
Gelation of ABA triblock copolymers Physical gel Gel point G’, G” Liquid Triblock copolymers C << C* C > C*
SOS gel point in an ionic liquid Y. He, P. G. Boswell, P. Bühlmann, T. P. Lodge, J. Phys. Chem. B,111, 4645, (2007)
Newtonian droplets in a Newtonian fluid The “Gel” Samples Can be Interpreted Simply 10% low molar mass PIB in low molar mass PDMS I. Vinckier et al., J. Rheol. 40, 613 (1996)
Polyisoprene: an entangled melt J. C. Haley, Ph. D. Thesis, Univ. Minn., (2005)
Meet the suspects 6 typical materials Dilute Polymer Solution Entangled Polymer (M/S) Surfactant Solution Gel Emulsion Suspension
Entangled polymers NIST standard 11 wt% high MW PIB (MW~106, Aldrich) in Pristane LVE properties Data from Snijkers et al, J. Rheology, 53, pp. 459-480 (2009)
Colloidal Suspension 10 4 φ c 0.421 10 3 0.426 0.437 0.452 10 2 0.455 0.471 0.482 10 1 0.502 G' (Pa) 0.515 0.534 10 0 10 -1 10 -2 10 -2 10 -1 10 0 10 1 10 2 ω (rad/s) Polystyrene-butylacrylate latices L. Raynaud et al, J. Coll. Int. Sci, 81, 11 (1996))