650 likes | 1.26k Views
Financial Risk Management. Zvi Wiener 02-588-3049 http://pluto.mscc.huji.ac.il/~mswiener/zvi.html. Risk. Business Risk Operational Risk Financial Risk credit risk market risk liquidity risk Legal Risk. Crouhy, Galai, Mark, Risk Management, McGraw Hill, 2000.
E N D
Financial Risk Management Zvi Wiener 02-588-3049 http://pluto.mscc.huji.ac.il/~mswiener/zvi.html
Risk • Business Risk • Operational Risk • Financial Risk • credit risk • market risk • liquidity risk • Legal Risk FRM-1
Crouhy, Galai, Mark, Risk Management, McGraw Hill, 2000. • Golub, Tilman, Risk Management Approaches for Fixed Income Markets, Wiley, 2000. • Jorion, Value at Risk, McGraw Hill, 1997. • http://www.gloriamundi.org • http://www.riskmetrics.com • http://www.bis.org • http://www.garp.com FRM-1
Derivatives 1993-1995 ($ million) • Shova Shell, Japan 1,580 • Kashima Oil, Japan 1,450 • Metallgesellschaft 1,340 • Barings, U.K. 1,330 • Codelco, Chile 200 • Procter & Gamble, US 157 FRM-1
Barings • February 26, 1995 • 233 year old bank • 28 year old Nick Leeson • $1,300,000,000 loss • bought by ING for $1.5 FRM-1
Public Funds ($ million) • Orange County 1,640 • San Diego 357 • West Virginia 279 • Florida State Treasury 200 • Cuyahoga County 137 • Texas State 55 FRM-1
Orange County • Bob Citron, the county treasures • $7.5B portfolio (schools, cities) • borrowed $12.5B, invested in 5yr. notes • interest rates increased • reported at cost - big mistake! • realized loss of $1.64B FRM-1
Financial Losses • Barings $1.3B • Bank Negara, Malaysia 92 $3B • Banesto, Spain $4.7B • Credit Lyonnais $10B • S&L, U.S.A. $150B • Japan $500B FRM-1
Metallgesellshaft • 14th largest industrial group • 58,000 employees • offered long term oil contracts • hedge by long-term forward contracts • short term contracts were used (rolling hedge) • 1993 price fell from $20 to $15 • $1B margin call in cash FRM-1
Basic Statistics • Certainty and uncertainty • Probabilities, distribution, PDF, CDF • Mean, variance • Multivariable distributions • Covariance, correlation, beta • Quantile FRM-1
A 100 km. B 100 km/hr 50 km/hr 1 – 100 2 – 50 3 – 50 (100+50+50)/3 = 66.67 km/hr. FRM-1
1. +40% 2. +10% 3. -50% 4. +20% 1. -2% 2. +1% 3. -1% 4. +1% 0.98*1.01*0.99*1.01 = 0.9897 1.4*1.1*0.5*1.2 = 0.924 FRM-1
Probabilities Certainty Uncertainty Probabilities FRM-1
Probabilities Mean Variance FRM-1
30% 30% 10% 10% 20% Probabilities 0.3 0.2 0.1 1 2 3 4 5 FRM-1
Probabilities 0.3 0.2 0.1 1 2 3 4 5 FRM-1
Probabilities FRM-1
Probabilities FRM-1
Sample Estimates Sometimes one can use weights FRM-1
Normal Distribution N(, ) FRM-1
Normal Distribution 1% quantile FRM-1
Lognormal Distribution FRM-1
Covariance Shows how two random variables are connected For example: independent move together move in opposite directions covariance(X,Y) = FRM-1
Correlation -1 1 = 0 independent = 1 perfectly positively correlated = -1 perfectly negatively correlated FRM-1
Properties FRM-1
Time Aggregation Assuming normality FRM-1
Time Aggregation • Assume that yearly parameters of CPI are: mean = 5%, standard deviation (SD) = 2%. • Then daily mean and SD of CPI changes are: FRM-1
A rf B Portfolio 2(A+B) = 2(A) + 2(B) + 2(A)(B) FRM-1
¥$£ £¥ $¥ £$¥ $£¥ £$ £ $ FRM-1
2 12 John Zerolis "Triangulating Risk", Risk v.9 n.12, Dec. 1996 1 FRM-1
Useful Books • Duffie D., Dynamic Asset Pricing Theory. • Duffie D., Security Markets, Stochastic Models. • Shimko D. Finance in Continuous Time, A Primer. Kolb Publishing Company, 1992. FRM-1
0.125 0.25 0.5 0.375 0.5 0.5 0.375 0.25 0.125 Binomial Tree 1.0 FRM-1
Example We will receive n dollars where n is determined by a die. What would be a fair price for participation in this game? FRM-1
Example 1 Score Probability 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 Fair price is 3.5 NIS. Assume that we can play the game for 3 NIS only. FRM-1
Example If there is a pair of dice the mean is doubled. What is the probability to gain $5? FRM-1
Example All combinations: 1,1 2,1 3,1 4,1 5,1 6,1 1,2 2,2 3,2 4,2 5,2 6,2 1,3 2,3 3,3 4,3 5,3 6,3 1,4 2,4 3,4 4,4 5,4 6,4 1,5 2,5 3,5 4,5 5,5 6,5 1,6 2,6 3,6 4,6 5,6 6,6 36 combinations with equal probabilities FRM-1
Example All combinations: 1,1 2,1 3,1 4,1 5,1 6,1 1,2 2,2 3,2 4,2 5,2 6,2 1,3 2,3 3,3 4,3 5,3 6,3 1,4 2,4 3,4 4,4 5,4 6,4 1,5 2,5 3,5 4,5 5,5 6,5 1,6 2,6 3,6 4,6 5,6 6,6 4 out of 36 give $5, probability = 1/9 FRM-1
Additional information: the first die gives 4. All combinations: 1,1 2,1 3,1 4,1 5,1 6,1 1,2 2,2 3,2 4,2 5,2 6,2 1,3 2,3 3,3 4,3 5,3 6,3 1,4 2,4 3,4 4,4 5,4 6,4 1,5 2,5 3,5 4,5 5,5 6,5 1,6 2,6 3,6 4,6 5,6 6,6 1 out of 9 give $5, probability = 1/9 FRM-1
Additional information: the first die gives 4. All combinations: 1,1 2,1 3,1 4,1 5,1 6,1 1,2 2,2 3,2 4,2 5,2 6,2 1,3 2,3 3,3 4,3 5,3 6,3 1,4 2,4 3,4 4,4 5,4 6,4 1,5 2,5 3,5 4,5 5,5 6,5 1,6 2,6 3,6 4,6 5,6 6,6 4 out of 24 give $5, probability = 1/6 FRM-1
Example 1 -2 -1 0 1 2 3 FRM-1
Example 1 1 2 3 4 5 6 we pay 1 2 3 4 5 6 7 6 NIS. 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12 FRM-1
P&L 1 2 3 4 5 6 1 -4 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 4 -1 0 1 2 3 4 5 0 1 2 3 4 5 61 2 3 4 5 6 FRM-1
Example 1 (2 cubes) FRM-1
Example 1 (5 cubes) FRM-1
$4 $2 Breakfast 50% 50% FRM-1
$11 $5 Lunch 50% 50% FRM-1