1 / 29

Introduction to Networking

Introduction to Networking. Variable Length Subnet Masking (VLSM). What do you know?. Do you know how to convert decimal numbers to Base 2 numbers and vice versa? Do you know what a subnet is? Do you know what VLSM stands for and what it is?

floria
Download Presentation

Introduction to Networking

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Networking Variable Length Subnet Masking (VLSM)

  2. What do you know? • Do you know how to convert decimal numbers to Base2 numbers and vice versa? • Do you know what a subnet is? • Do you know what VLSM stands for and what it is? • Do you know how to perform the VLSM process to devise a logical network scheme? *** Richard Hancock - 2010

  3. Objectives • Be able to describe what subnetting is and what it’s benefits are • Be able to define VLSM and describe what it does • Be able to describe the advantages of VLSM • Be able to perform VLSM operations on given IP addresses *** Richard Hancock - 2010

  4. Subnetting • The process of dividing a network up into subnets and to assign each subnet a valid network IP address, and the hosts on that subnet valid IP addresses Subnet 2 Subnet 1 Subnet 3

  5. Subnet benefits • Makes larger networks more manageable • Reduces bandwidth consumption as a router must forward packets between subnets • Can provide a level of security in the network • But most importantly, it allows you to preserve your IP address allocation and use it more efficiently and effectively *** Richard Hancock - 2010

  6. Types of subnetting • There are two types of subnetting: • Classful • Classless (VLSM) • Classful subnetting is used in older network protocols and has various issues that reduce it’s effectiveness • Classful subnetting would not allow you to use Subnet Zero • Classless subnetting (VLSM) is a more efficient system to preserve IP addresses and is used in modern routing protocols • Classless subnetting allows you to use Subnet Zero *** Richard Hancock - 2010

  7. Some rules • You cannot use the Network address or the Broadcast address as a host address in either Classful or Classless subnetting! • Once a subnet address is allocated to a subnet with it’s subnet mask it cannot be used for subnetting again *** Richard Hancock - 2010

  8. Variable Length Subnet Masks • More than one subnet mask 172.80.40.0 172.80.40.1 – 47.254 172.80.32.0 172.80.32.1 – 39.254 172.80.24.0 172.80.24.1 – 31.254 172.80.8.0 172.80.8.1 – 15.254 172.80.16.0 172.80.16.1 – 23.254 Richard Hancock - 2010

  9. We need • An IP address to perform VLSM on • The number of segments we want to divide the major network into • The number of hosts involved in each part of each segment *** Richard Hancock - 2010

  10. Example using a Class C network address 192.168.1.0 60 hosts No subnet mask 120 hosts No subnet mask 30 hosts No subnet mask Richard Hancock - 2010

  11. Process • Find the segment with the largest number of hosts connected to it • Find an appropriate subnet mask for the largest segment • Write down the subnet addresses to fit the subnet mask • Take one of the newly created subnet addresses and apply a new subnet mask to it that is more appropriate • Write down the subnet addresses to fit the new subnet mask • Repeat from step 4 for smaller segments Richard Hancock - 2010

  12. Step 1 • Find the segment with the largest number of hosts connected to it • In the example the largest segment has 120 hosts connected so we must start with this segment • How many bits would we need to make 120? • To accomodate120 hosts we need to use 7 bits from the host portion of the address (27 - 2 = 126) 60 hosts 120 hosts 30 hosts Richard Hancock - 2010

  13. Step 2 • Find an appropriate subnet mask for the largest segment • If we have borrowed 7 bits for our hosts the subnet mask (in binary) will be 11111111.1111111.1111111.1000000 • What is 11111111.11111111.11111111.10000000 expressed in base10? • Converted to decimal (base10) we get 255.255.255.128 Richard Hancock - 2010

  14. Step 3 • Write down the subnet addresses to fit the subnet mask • Now we need to find the subnet addresses that this subnet mask will create • Use the formula (256 - the subnet mask) • 256 – 128 = 128 • Therefore the subnets would be • 192.168.1.0 and • 192.168.1.128 • We can now assign 192.168.1.0/25 to accommodate the 120 segment • 192.168.1.128 can be used for further subnetting for the other two segments Richard Hancock - 2010

  15. So far... 60 hosts (62 in total) No subnet mask 120 hosts (126 in total) 192.168.1.0/25 30 hosts (30 in total) No subnet mask Richard Hancock - 2010

  16. Step 4 • Take one of the newly created subnet addresses and apply a new subnet mask to it that is more appropriate • We still have two segments to deal with and we have a new subnet address to work with of 192.168.1.128 • We must start with the larger segment, which has 60 hosts • To accommodate 60 hosts we need to borrow 6 bits from the host portion of the given IP address • 26 – 2 = 62 hosts • This will give us a subnet mask of 1111111.1111111.1111111.11000000 • Converted to decimal this will be? • 255.255.255.192 60 hosts (62 in total) Done 30 hosts (30 in total) Richard Hancock - 2010

  17. Step 5 • Write down the subnet addresses to fit the new subnet mask • Now we need to find the subnet addresses that this subnet mask will create • 256 – 192 = 64 • Therefore the new subnet addresses would be • 192.168.1.128 and • 192.168.1.192 • We can now use 192.168.1.128/26 for the segment with 60 hosts • We have 192.168.1.192 left over to further subnet Richard Hancock - 2010

  18. So far... 60 hosts (62 in total) 192.168.1.128/26 120 hosts (126 in total) 192.168.1.0/25 30 hosts (30 in total) No subnet mask Richard Hancock - 2010

  19. Step 4 is repeated • Take one of the newly created subnet addresses and apply a new subnet mask to it that is more appropriate • We still have the segment with 30 hosts to deal with • We work this out in the same way as before • To accommodate 30 hosts we need to borrow 5 bits from the host portion of the IP address • 25 – 2 = 30 hosts • This will give us a subnet mask of 1111111.1111111.1111111.11100000 which is 255.255.255.224 Richard Hancock - 2010

  20. Step 5 is repeated • Write down the subnet addresses to fit the new subnet mask • Now we need to find the subnet addresses that this subnet mask will create • 256 – 224 = 32 • Therefore the new subnet addresses would be 192.168.1.192 and 192.168.1.224 • We can now use 192.168.1.192/27 for the segment with 30 hosts • We still have the new 192.168.1.224 subnet which could be used for future growth Richard Hancock - 2010

  21. Result! 192.168.1.0 60 hosts (62 in total) 192.168.1.128/26 120 hosts (126 in total) 192.168.1.0/25 30 hosts (30 in total) 192.168.1.192/27 Richard Hancock - 2010

  22. Exercise 1 • 192.168.2.0/24 • 7 remote sites, 30 hosts each • P to P links between routers Remote A 30 hosts Remote B 30 hosts Remote C 30 hosts Remote D 30 hosts Central Remote E 30 hosts Remote F 30 hosts Remote G 30 hosts Richard Hancock - 2010

  23. Exercise 1 solution Remote hosts • 25 – 2 =30 hosts • 11111111.11111111.1111111.11100000 (255.255.255.224) • 256 – 224 = 32 • 192.168.2.0/27 (assigned to segment) • 192.168.2.32/27 (assigned to segment) • 192.168.2.64/27 (assigned to segment) • 192.168.2.96/27 (assigned to segment) • 192.168.2.128/27 (assigned to segment) • 192.168.2.160/27 (assigned to segment) • 192.168.2.192/27 (assigned to segment) • 192.168.2.224/27 (left for further subnetting) • Eight subnets created. • First seven give to remote sites; eighth subnet re-subnetted to accommodate the P to P links. Richard Hancock - 2010

  24. Exercise 1 solution continued P to P links • 22 – 2 = 2 hosts • 11111111.11111111.11111111.11111100 (255.255.255.252) • 256 – 252 = 4 • 192.168.2.224/30 (assigned to segment) • 192.168.2.228/30 (assigned to segment) • 192.168.2.232/30 (assigned to segment) • 192.168.2.236/30 (assigned to segment) • 192.168.2.240/30 (assigned to segment) • 192.168.2.244/30 (assigned to segment) • 192.168.2.248/30 (assigned to segment) • 192.168.2.252/30 (expansion) • Eight subnets created supporting 2 IP addresses • Only seven subnets are needed, leaving one left over for expansion. Richard Hancock - 2010

  25. Exercise • 192.168.3.0 30 hosts 6 hosts Backbone 126 hosts 6 hosts 30 hosts 6 hosts 30 hosts Richard Hancock - 2010

  26. Exercise 2 solution Backbone 27 – 2 = 126 11111111.1111111.11111111.10000000 (255.255.255.128) 256 – 128 = 128 192.168.3.0 /25(assigned to backbone) 192.168.3.128/25 30 Hosts 25 – 2 = 30 11111111.11111111.11111111.11100000 (255.255.255.224) 256 – 224 = 32 192.168.3.128/27 (assigned to segment) 192.168.3.160/27 (assigned to segment) 192.168.3.192/27 (assigned to segment) 192.168.3.224/27 6 hosts 23 – 2 =6 11111111.11111111.11111111.11111000 (255.255.255.248) 256 – 248 = 8 192.168.3.224/29 (assigned to segment) 192.168.3.232/29 (assigned to segment) 192.168.3.240/29 (assigned to segment) 192.168.3.248/29 (expansion) Richard Hancock - 2010

  27. Summary • Classless subnetting (VLSM) is used in most networks and uses modern routing protocols • Subnetting is all about • Preserving IP addresses • Making large networks more manageable (logically) • Preserving bandwidth • Providing a level of security • To determine the number of hosts a subnet can support use the formula 2n – 2 • Always start the VLSM process with the segment with the largest amount of hosts to accommodate • You cannot use the subnet address or broadcast address as a host address Richard Hancock - 2010

  28. Questions... • ...are there any? Richard Hancock - 2010

  29. End! Richard Hancock - 2010

More Related