740 likes | 750 Views
Dive into the world of causal inference with a focus on propensity scores, mediation, external validity, and selection bias. Learn how to analyze counterfactuals, structural models, and the five key steps in causal analysis, as outlined by expert Judea Pearl.
E N D
WHAT'S NEW IN CAUSAL INFERENCE: From Propensity Scores And Mediation To External Validity And Selection Bias Judea Pearl UCLA (www.cs.ucla.edu/~judea/)
OUTLINE • Unified conceptualization of counterfactuals, structural-equations, and graphs • Propensity scores demystified • Direct and indirect effects (Mediation) • External validity mathematized
P Joint Distribution Q(P) (Aspects of P) Data Inference TRADITIONAL STATISTICAL INFERENCE PARADIGM e.g., Infer whether customers who bought product A would also buy product B. Q = P(B | A)
THE STRUCTURAL MODEL PARADIGM Joint Distribution Data Generating Model Q(M) (Aspects of M) Data M Inference • M – Invariant strategy (mechanism, recipe, law, protocol) by which Nature assigns values to variables in the analysis. “Think Nature, not experiment!”
FAMILIAR CAUSAL MODEL ORACLE FOR MANIPILATION X Y Z INPUT OUTPUT
e.g., STRUCTURAL CAUSAL MODELS • Definition: A structural causal model is a 4-tuple • V,U, F, P(u), where • V = {V1,...,Vn} are endogeneas variables • U={U1,...,Um} are background variables • F = {f1,...,fn} are functions determining V, • vi = fi(v, u) • P(u) is a distribution over U • P(u) and F induce a distribution P(v) over observable variables
The Fundamental Equation of Counterfactuals: CAUSAL MODELS AND COUNTERFACTUALS Definition: The sentence: “Y would be y (in situation u), had X beenx,” denoted Yx(u) = y, means: The solution for Y in a mutilated model Mx, (i.e., the equations for X replaced by X = x) with input U=u, is equal to y.
READING COUNTERFACTUALS FROM SEM Data shows: a = 0.7, b = 0.5, g = 0.4 A student named Joe, measured X=0.5, Z=1, Y=1.9 Q1: What would Joe’s score be had he doubled his study time?
READING COUNTERFACTUALS Q1: What would Joe’s score be had he doubled his study time? Answer: Joe’s score would be 1.9 Or, In counterfactual notation:
READING COUNTERFACTUALS Q2: What would Joe’s score be, had the treatment been 0 and had he studied at whatever level he would have studied had the treatment been 1?
POTENTIAL AND OBSERVED OUTCOMES PREDICTED BY A STRUCTURAL MODEL
Joint probabilities of counterfactuals: In particular: CAUSAL MODELS AND COUNTERFACTUALS Definition: The sentence: “Y would be y (in situation u), had X beenx,” denoted Yx(u) = y, means: The solution for Y in a mutilated model Mx, (i.e., the equations for X replaced by X = x) with input U=u, is equal to y.
THE FIVE NECESSARY STEPS OF CAUSAL ANALYSIS Define: Assume: Identify: Estimate: Test: Express the target quantity Q as a function Q(M) that can be computed from any model M. Formulate causal assumptions Ausing some formal language. Determine if Q is identifiable given A. EstimateQ if it is identifiable; approximate it, if it is not. Test the testable implications of A (if any).
THE FIVE NECESSARY STEPS OF CAUSAL ANALYSIS Define: Assume: Identify: Estimate: Test: Express the target quantity Q as a function Q(M) that can be computed from any model M. Formulate causal assumptions Ausing some formal language. Determine if Q is identifiable given A. EstimateQ if it is identifiable; approximate it, if it is not. Test the testable implications of A (if any).
THE LOGIC OF CAUSAL ANALYSIS CAUSAL MODEL (MA) CAUSAL MODEL (MA) A - CAUSAL ASSUMPTIONS A* - Logical implications of A Causal inference Q Queries of interest Q(P) - Identified estimands T(MA) - Testable implications Statistical inference Data (D) Q - Estimates of Q(P) Goodness of fit Provisional claims Model testing
G IDENTIFICATION IN SCM Find the effect ofXonY, P(y|do(x)),given the causal assumptions shown inG, whereZ1,..., Zk are auxiliary variables. Z1 Z2 Z3 Z4 Z5 X Z6 Y CanP(y|do(x))be estimated if only a subset,Z, can be measured?
G Gx Moreover, (“adjusting” for Z) Ignorability ELIMINATING CONFOUNDING BIAS THE BACK-DOOR CRITERION P(y | do(x)) is estimable if there is a set Z of variables such thatZd-separates X from YinGx. Z1 Z1 Z2 Z2 Z Z3 Z3 Z4 Z5 Z5 Z4 X X Z6 Y Y Z6
Watch out! No, no! EFFECT OF WARM-UP ON INJURY (After Shrier & Platt, 2008) ??? Front Door Warm-up Exercises (X) Injury (Y)
L Theorem: Adjustment for L replaces Adjustment for Z PROPENSITY SCORE ESTIMATOR (Rosenbaum & Rubin, 1983) Z1 Z2 P(y | do(x)) = ? Z4 Z3 Z5 X Z6 Y Can L replace {Z1, Z2, Z3, Z4, Z5} ?
Z Z Z X Y X Y X Y X Y WHAT PROPENSITY SCORE (PS) PRACTITIONERS NEED TO KNOW • The asymptotic bias of PS is EQUAL to that of ordinary adjustment (for same Z). • Including an additional covariate in the analysis CANSPOIL the bias-reduction potential of others. Z • In particular, instrumental variables tend to amplify bias. • Choosing sufficient set for PS, requires knowledge of the model.
SURPRISING RESULT: Instrumental variables are Bias-Amplifiers in linear models (Bhattarcharya & Vogt 2007; Wooldridge 2009) (Unobserved) Z U c3 c1 c2 X Y c0 “Naive” bias Adjusted bias
Z Z U U c3 c3 c1 c1 c2 c2 X X Y Y c0 c0 INTUTION: When Z is allowed to vary, it absorbs (or explains) some of the changes in X. When Z is fixed the burden falls on U alone, and transmitted to Y (resulting in a higher bias) Z U c3 c1 c2 X Y c0
WHAT’S BETWEEN AN INSTRUMENT AND A CONFOUNDER? Should we adjust for Z? U Z c4 c1 c3 c2 T1 T2 c0 Y X Yes, if No, otherwise Adjusting for a parent of Y is safer than a parent of X ANSWER: CONCLUSION:
Z T X Y WHICH SET TO ADJUST FOR Should we adjust for {T},{Z}, or {T, Z}? Answer 1: (From bias-amplification considerations) {T} is better than {T, Z} which is the same as {Z} Answer 2: (From variance considerations) {T} is better than {T, Z} which is better than {Z}
CONCLUSIONS • The prevailing practice of adjusting for all covariates, especially those that are good predictors of X(the “treatment assignment,” Rubin, 2009) is totally misguided. • The “outcome mechanism” is as important, and much safer, from both bias and variance viewpoints • As X-rays are to the surgeon, graphs are for causation
The mothers of all questions: Q. When would b equal a? A. When all back-door paths are blocked, (uY X) REGRESSION VS. STRUCTURAL EQUATIONS (THE CONFUSION OF THE CENTURY) Regression (claimless, nonfalsifiable): Y = ax + Y Structural (empirical, falsifiable): Y = bx + uY Claim: (regardless of distributions): E(Y | do(x)) = E(Y | do(x), do(z)) = bx Q. When is b estimable by regression methods? A. Graphical criteria available
TWO PARADIGMS FOR CAUSAL INFERENCE Observed: P(X, Y, Z,...) Conclusions needed: P(Yx=y), P(Xy=x | Z=z)... How do we connect observables, X,Y,Z,… to counterfactuals Yx, Xz, Zy,… ? N-R model Counterfactuals are primitives, new variables Super-distribution Structural model Counterfactuals are derived quantities Subscripts modify the model and distribution
inconsistency: x = 0 Yx=0 = Y Y = xY1 + (1-x) Y0 “SUPER” DISTRIBUTION IN N-R MODEL X 0 0 0 1 Y 0 1 0 0 Z 0 1 0 0 Yx=0 0 1 1 1 Yx=1 1 0 0 0 Xz=0 0 1 0 0 Xz=1 0 0 1 1 Xy=0 0 1 1 0 U u1 u2 u3 u4
ARE THE TWO PARADIGMS EQUIVALENT? • Yes (Galles and Pearl, 1998; Halpern 1998) • In the N-R paradigm, Yx is defined by consistency: • In SCM, consistency is a theorem. • Moreover, a theorem in one approach is a theorem in the other. • Difference: Clarity of assumptions and their implications
AXIOMS OF STRUCTURAL COUNTERFACTUALS Yx(u)=y: Ywould bey, hadXbeenx(in stateU = u) (Galles, Pearl, Halpern, 1998): • Definiteness • Uniqueness • Effectiveness • Composition (generalized consistency) • Reversibility
1. English: Smoking (X), Cancer (Y), Tar (Z), Genotypes (U) U Y X Z 2. Counterfactuals: 3. Structural: Z X Y FORMULATING ASSUMPTIONS THREE LANGUAGES
COMPARISON BETWEEN THE N-R AND SCM LANGUAGES • Expressing scientific knowledge • Recognizing the testable implications of one's assumptions • Locating instrumental variables in a system of equations • Deciding if two models are equivalent or nested • Deciding if two counterfactuals are independent given another • Algebraic derivations of identifiable estimands
Missing arrows Y Z Y Z GRAPHICAL – COUNTERFACTUALS SYMBIOSIS Every causal graph expresses counterfactuals assumptions, e.g., X Y Z 2. Missing arcs • consistent, and readable from the graph. • Express assumption in graphs • Derive estimands by graphical or algebraic methods
EFFECT DECOMPOSITION (direct vs. indirect effects) • Why decompose effects? • What is the definition of direct and indirect effects? • What are the policy implications of direct and indirect effects? • When can direct and indirect effect be estimated consistently from experimental and nonexperimental data?
WHY DECOMPOSE EFFECTS? • To understand how Nature works • To comply with legal requirements • To predict the effects of new type of interventions: • Signal routing, rather than variable fixing
LEGAL IMPLICATIONS • OF DIRECT EFFECT Can data prove an employer guilty of hiring discrimination? X Z (Gender) (Qualifications) Y (Hiring) What is the direct effect of X on Y ? (averaged over z) Adjust for Z? No! No!
FISHER’S GRAVE MISTAKE • (after Rubin, 2005) What is the direct effect of treatment on yield? X Z (Soil treatment) (Plant density) (Latent factor) Y (Yield) Compare treated and untreated lots of same density No! No! Proposed solution (?): “Principal strata”
NATURAL INTERPRETATION OF AVERAGE DIRECT EFFECTS Robins and Greenland (1992) – “Pure” X Z z = f (x, u) y = g (x, z, u) Y Natural Direct Effect of X on Y: The expected change in Y, when we change X from x0 to x1 and, for each u, we keep Z constant at whatever value it attained before the change. In linear models, DE = Natural Direct Effect
DEFINITION AND IDENTIFICATION OF NESTED COUNTERFACTUALS Consider the quantity Given M, P(u), Q is well defined Given u,Zx*(u) is the solution for Z in Mx*,call it z is the solution for Y in Mxz Can Q be estimated from data? Experimental: nest-free expression Nonexperimental: subscript-free expression
DEFINITION OF INDIRECT EFFECTS X Z z = f (x, u) y = g (x, z, u) No Controlled Indirect Effect Y Indirect Effect of X on Y: The expected change in Y when we keep Xconstant, say at x0, and let Zchange to whatever value it would have attained had X changed to x1. In linear models, IE = TE - DE
GENDER QUALIFICATION HIRING POLICY IMPLICATIONS OF INDIRECT EFFECTS What is the indirect effect of X on Y? The effect of Gender on Hiring if sex discrimination is eliminated. X Z IGNORE f Y Deactivating a link – a new type of intervention
MEDIATION FORMULAS • The natural direct and indirect effects are identifiable in Markovian models (no confounding), • And are given by: • Applicable to linear and non-linear models, continuous and discrete variables, regardless of distributional form.
g xz Linear + interaction Z m1 m2 X Y In linear systems
Z X Y MEDIATION FORMULAS IN UNCONFOUNDED MODELS
TE TE - DE IE DE Disabling direct path Disabling mediation Z m1 m2 X Y In linear systems Is NOT equal to:
Z MEDIATION FORMULA FOR BINARY VARIABLES X Y
RAMIFICATION OF THE MEDIATION FORMULA • DE should be averaged over mediator levels, • IE should NOT be averaged over exposure levels. • TE-DE need not equal IE • TE-DE = proportion for whom mediation is necessary • IE = proportion for whom mediation is sufficient • TE-DE informs interventions on indirect pathways • IE informs intervention on direct pathways.
Z = age Z = age Y Y X X TRANSPORTABILITY -- WHEN CAN WE EXTRAPOLATE EXPERIMENTAL FINDINGS TO DIFFERENT POPULATIONS? Experimental study in LA Measured: Problem: We find (LA population is younger) What can we say about Intuition: Observational study in NYC Measured:
Z Z Y Y X X Z Y X (b) (a) (c) TRANSPORT FORMULAS DEPEND ON THE STORY a) Z represents age b) Z represents language skill c) Z represents a bio-marker
TRANSPORTABILITY (Pearl and Bareinboim, 2010) • Definition 1 (Transportability) • Given two populations, denoted and *, • characterized by models M = <F,V,U>and • M* = <F,V,U+S>, respectively, a causal relation • R is said to be transportable from to * if • 1. R() is estimable from the set I of interventional studies on , and • 2. R(*) is identified from I, P*, G, and G + S. S = external factors responsible for MM*