1 / 61

Chapter 11: Nuclear Nonproliferation and Safeguards

Chapter 11: Nuclear Nonproliferation and Safeguards. Jad Hudaib. Nonproliferation: “The effort to stop other nations from producing nuclear weapons or any nuclear explosive devise.” Nicholas Tsoulfanidis , The Nuclear Fuel Cycle.

Download Presentation

Chapter 11: Nuclear Nonproliferation and Safeguards

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 11:Nuclear Nonproliferation and Safeguards JadHudaib

  2. Nonproliferation: “The effort to stop other nations from producing nuclear weapons or any nuclear explosive devise.” • Nicholas Tsoulfanidis, The Nuclear Fuel Cycle. • Safeguards: Policies, procedures, and controls set up by the International Atomic Energy Agency (IAEA) to achieve nonproliferation.

  3. Nuclear Club • Original Five: • United States (1944-1945) • Russia (1949) • United Kingdoms (1952) • France (1960) • China (1964) • Partial Success

  4. India (1976) • Pakistan (1998) • North Korea (2005) • Israel (????) • Honorable Attempts: • South Africa • Brazil • Libya • Iraq • Iran (in progress)

  5. International Atomic Energy Agency • Created in 1957, based in Vienna, Austria. • Autonomous Intergovernmental Organization. • Reports to UN General Assembly and UN Security Council. • Currently 159 Member States (2013)

  6. IAEA cont. • Composed of a General Conference, Board of Governors, and Director General. • General Conference comprises of all member states and is the policy making body of the IAEA. • Board of Governors examines and makes recommendations to the General Conf. regarding accounts, and budget of IAEA.

  7. IAEAcont. • Objectives: • Providing safe, secure, and peaceful uses of nuclear technology and science to nations. • Ensuring that any nuclear activities that the IAEA are involved with are not being used for any military agenda.

  8. IAEA cont. • Made up of five departments: • Nuclear Science and Applications • Nuclear Energy • Nuclear safety and Security • Technical Cooperation • Safeguards

  9. IAEA cont. • Nuclear Science and Applications: Helps member countries in the use of atomic and nuclear radiation in agriculture, medical programs, industrial applications…etc. • Nuclear Energy: Promotes the efficient and safe application of nuclear power for peaceful means; mostly power generation.

  10. IAEA cont. • Nuclear Safety and Security: Establish measures for the protection of people and the environment from radiation, and to develop programs for the response to nuclear accidents. • Technical Cooperation: Helps nations improve their scientific and technological abilities for peaceful uses of nuclear technology.

  11. IAEA cont. • Safeguards: Carries out its responsibilities as the world’s inspector in an effort to stop the spread of nuclear weapons. • IAEA is the only international Agency with the responsibility of inspecting nuclear facilities across the world, to insure the signed agreements are being followed.

  12. IAEA cont. • It creates policies to ensure that weapons materials do not become available the non-nuclear weapon states or terrorist organizations. • This information is distributed to member states in reports known as Information Circulars.

  13. Non-Proliferation Treaty • Completed in 1968. • Original five nuclear weapon states realized that if more countries develop nuclear weapon, then the risk of nuclear accidents will increase. • The effort to limit NWS resulted in the NPT.

  14. NPT cont. • 190 States have currently signed. • India, Pakistan, and Israel never signed. • Three Important declarations of the NPT: • Nuclear weapon states promise not to provide weapons materials and technology to anyone else and to commit to disarmament.

  15. NPT cont. 2. States with nuclear technology promise to help others without it, with the idea that every state should reap the benefits of nuclear energy. 3. The Treaty recognizes the inalienable right of every state to utilize nuclear energy for peaceful purposes.

  16. NPT cont. • Conferences were held in both 1995 and 2010 to extend and reaffirm the NPT.

  17. Information Circulars • Informational reports that IAEA distributed regarding agreements made by member states. • 854 have been released. • Most recent have been about a response from Iran about the UN’s efforts and concerns about nonproliferation in the state.

  18. INFCIRC cont. • Three most important INFCIRC are: • INFCIRC/66 (1968): The Agency’s Safeguards System- Lists the duties and obligations of the IAEA, and the procedures and principles of implementing safeguards.

  19. INFCIRC cont. 2. INFCIRC/153 (1972): The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non- Proliferation of Nuclear Weapons- Agreements should include a guarantee by the state to accept safeguards set by the Treaty and the IAEA.

  20. INFCIRC cont. 3. INFCIRC/540 (1997): Model Protocol Additional to the Agreement(s) between State(s) and the IAEA for the Application of Safeguards- States must adhere to: 1. Freely give all information regarding a State’s Fuel Cycle.

  21. INFCIRC cont. 2. Provide information on the manufacture and export of devices using nuclear technologies and inspection mechanisms for manufacturing and import locations of such devices.

  22. INFCIRC cont. 3. Allow, after short notice, IAEA inspections of all buildings on a nuclear site. 4. Collection of environmental samples at the IAEA’s discretion.

  23. Safeguards • Safeguards: Policies, procedures, and controls set up by the IAEA to achieve nonproliferation. • Safeguard efforts are centered on international treaties and the activities of the IAEA.

  24. Objectives: • Timely detection of diversion of nuclear materials for peaceful activities to the manufacture of nuclear explosives. • Detection of diversion of nuclear materials or information from one state to another or to a non-state group for making nuclear explosives. • Deterrence of such diversion because of the risk of detection.

  25. Safeguards cont. • Completing these objectives are based on the verification of the national system of accountancy and control of nuclear materials. • Verification is done by IAEA inspections, surveillance, and material accountability.

  26. Safeguards cont. • Following the NPT, nuclear weapon states follow IAEA Safeguards voluntarily: • US, UK, France, India: All Civil Facilities • Russia: Not all, yet • China: All imported nuclear facilities • Pakistan: Civilian reactors under restricted agreement • North Korea, Israel: No civilian nuclear power

  27. Agreements: treaties or agreements between the IAEA and a State for the application of Safeguards. • INFCIRC/66-type safeguards agreement — specifies the nuclear material, non-nuclear material, facilities and or equipment to be safeguarded.

  28. Voluntary offer agreement (VOA) — between IAEA and a NWS to answer concerns that Safeguards could lead to commercial disadvantages. • Comprehensive safeguards agreement (CSA) — an agreement that applies safeguards on all nuclear material in all nuclear activities in a State.

  29. Compliance with Safeguards • Every state with a signed agreement with the IAEA must prove that it complies to the agreement. • Use of Nuclear Material accountability. • Upon inspection, the State must demonstrate and prove that the documented material mass at each nuclear facility match the real inventory.

  30. The difference between the documented and real inventory is called material unaccounted for (MUF). • MUF= (PB+X-Y)-PE • PB= beginning physical inventory • X= increases to inventory • Y=decreases to inventory • PE= ending physical inventory

  31. Example • An Uranium enrichment facility currently holds 600kg of U, a shipment of 25kg of U comes in the same day as 3kg of U is being shipped out to a national lab. IAEA inspectors come the next day to find 623kg of U on site. What is the MUF and is it acceptable?

  32. Noncompliance with Safeguards • “Noncompliance” is found throughout the founding articles of the IAEA. • However, not well defined. • Up to Board of Governors to decide.

  33. Events that may constitute Noncompliance: • MUF is high or unexplained: ( mass measured< documented inventory) • Nuclear material or nuclear activity has not been declared. • Use of nuclear material is not clearly civil, if there is suspicion that it may be use for military purposes. • Military grade nuclear material or information related to the military use of nuclear material has been given to a third party.

  34. In the course of a Noncompliance inquiry the following questions are asked: • Does evidence of falsehoods and concealment exist? Thus indicating the actions were deliberate. • What material is involved? • (natural U, thorium, fissile material…etc) • What are the activities involved? Can they lead to enrichment and weapons grade material? • Where is the material?

  35. To declare Noncompliance, according to INFCIRC/153: • Nuclear material or activity has not been declared or that is has been removed from Safeguards. • The failure is considered significant. • The purpose of the nuclear material or activity is military based or uncertain. • To remedy Noncompliance, the State comply to the steps in INFCIRC/153 & 540.

  36. Strategic Nuclear Materials • Materials safeguards are place on: • Thorium • Uranium • Plutonium • “Not all isotopes are created equally” • IAEA classifies materials as: • Direct Use Materials • Special Fissionable Materials • Indirect Use Materials

  37. Direct Use Material • Can be use to create nuclear explosive devises without further enrichment or transmutation • Pu containing < 80% Pu-238 • Highly enriched Uranium • U-233 • MOX Fuel • UNF (used nuclear fuel)

  38. Indirect use Material: • All material except Direct use Material • Natural & low enriched Uranium • Depleted Uranium • Thorium • Special Fissionable Material (Special Nuclear Material): • Pu-239, U-233, Uranium enriched in U-233,235 • Other fissionable material determined by BOG • Doesn’t include source material (U or Th in any physical or chemical form or ore contain at least .05% of either

  39. Effective Kilogram (ekg): • Max quantity of nuclear materials in “location outside facility” • LOF: any installation or location where nuclear materials used are < 1 ekg • ekg: determined by: • Pu weight (kg) • U enriched > 1%: [weight (kg)]*[] • .5%< U enriched < 1%: [weight (kg)]*[.0001] • U enriched < .5% or Th: [weight (kg)*[.00005]

  40. Significant Quantity: • Amount of nuclear material that could possibly be used to manufacture a nuclear explosive devise. • Takes into account unavoidable losses due to conversion and manufacturing process. • Not Critical Mass • INFCIRC/66: • IAEA demands info regarding materials used in fission reactors: • Nuclear grade Graphite, heavy water, deuterium, zirconium and zirconium alloys

  41. Nuclear Fuel Cycle and Proliferation • 1970s U.S. conducted study called: the Nonproliferation Alternate Systems Assessment Program (NASAP). • NASAP determined: • No fuel cycle is 100% proliferation resistant • Once-through fuel cycle is the most .proliferation resistant due to the fact that the weapons grade material is never separated during the cycle.

  42. Detection of Nuclear Materials • Cases where detection may be required: • Border crossing screening ( required of cargo containers and carriers). • Screening of materials in transit. • Searching for and seizing materials at suspicious locations. • After a radiological weapon has been detonated.

  43. Methods for detection: • Chemistry (radiochemistry or mass spectrometry) or radiation based ( detecting ionizing radiation). • Destructive or Nondestructive. • Active or Passive.

  44. Active Detection Method: • “Interrogation Method” • External radiation (neutron or gamma) irradiates a sample which produces measurable radiations. • Radiations produced result from the fission of fissile material. • Neutron Sources: • 14 MeV neutrons from a neutron generator. • Spontaneous fission of Cf-252 producing fast neutrons.

  45. Active Detection Method cont.: • Photons > 6 MeV are used to initiate photofission (gamma, fission) reaction. • Produced as Bremsstrahlung using an electron accelerator. • Fissile material is indicated by fission neutrons and gammas.

  46. Passive detection Methods: • Detect: • Neutrons from spontaneous fission from (alpha, neutron) reactions in the sample. • X-rays emitted by decaying fissile isotopes. • All isotopes under safeguards undergo spontaneous fission as a mode of decay. • He-3 counter is used to detect the neutrons.

More Related