1 / 28

Descriptive Statistics: Measures of Location and Variability

This presentation discusses various measures of location and variability in descriptive statistics, including mean, median, mode, percentiles, quartiles, range, interquartile range, variance, standard deviation, and coefficient of variation.

flynnm
Download Presentation

Descriptive Statistics: Measures of Location and Variability

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Slides Prepared by JOHN S. LOUCKS St. Edward’s University

  2. Chapter 3 Descriptive Statistics: Numerical MethodsPart A • Measures of Location • Measures of Variability   % x

  3. Measures of Location • Mean • Median • Mode • Percentiles • Quartiles

  4. Example: Apartment Rents Given below is a sample of monthly rent values ($) for one-bedroom apartments. The data is a sample of 70 apartments in a particular city. The data are presented in ascending order.

  5. Mean • The mean of a data set is the average of all the data values. • If the data are from a sample, the mean is denoted by . • If the data are from a population, the mean is denoted by m (mu).

  6. Example: Apartment Rents • Mean

  7. Median • The median is the measure of location most often reported for annual income and property value data. • A few extremely large incomes or property values can inflate the mean.

  8. Median • The median of a data set is the value in the middle when the data items are arranged in ascending order. • For an odd number of observations, the median is the middle value. • For an even number of observations, the median is the average of the two middle values.

  9. Example: Apartment Rents • Median Median = 50th percentile i = (p/100)n = (50/100)70 = 35.5 Averaging the 35th and 36th data values: Median = (475 + 475)/2 = 475

  10. Mode • The mode of a data set is the value that occurs with greatest frequency. • The greatest frequency can occur at two or more different values. • If the data have exactly two modes, the data are bimodal. • If the data have more than two modes, the data are multimodal.

  11. Example: Apartment Rents • Mode 450 occurred most frequently (7 times) Mode = 450

  12. Percentiles • A percentile provides information about how the data are spread over the interval from the smallest value to the largest value. • Admission test scores for colleges and universities are frequently reported in terms of percentiles.

  13. Percentiles • The pth percentile of a data set is a value such that at least p percent of the items take on this value or less and at least (100 - p) percent of the items take on this value or more. • Arrange the data in ascending order. • Compute index i, the position of the pth percentile. i = (p/100)n • If i is not an integer, round up. The pth percentile is the value in the ith position. • If i is an integer, the pth percentile is the average of the values in positions i and i+1.

  14. Example: Apartment Rents • 90th Percentile i = (p/100)n = (90/100)70 = 63 Averaging the 63rd and 64th data values: 90th Percentile = (580 + 590)/2 = 585

  15. Quartiles • Quartiles are specific percentiles • First Quartile = 25th Percentile • Second Quartile = 50th Percentile = Median • Third Quartile = 75th Percentile

  16. Example: Apartment Rents • Third Quartile Third quartile = 75th percentile i = (p/100)n = (75/100)70 = 52.5 = 53 Third quartile = 525

  17. Measures of Variability • It is often desirable to consider measures of variability (dispersion), as well as measures of location. • For example, in choosing supplier A or supplier B we might consider not only the average delivery time for each, but also the variability in delivery time for each.

  18. Measures of Variability • Range • Interquartile Range • Variance • Standard Deviation • Coefficient of Variation

  19. Range • The range of a data set is the difference between the largest and smallest data values. • It is the simplest measure of variability. • It is very sensitive to the smallest and largest data values.

  20. Example: Apartment Rents • Range Range = largest value - smallest value Range = 615 - 425 = 190

  21. Interquartile Range • The interquartile range of a data set is the difference between the third quartile and the first quartile. • It is the range for the middle 50% of the data. • It overcomes the sensitivity to extreme data values.

  22. Example: Apartment Rents • Interquartile Range 3rd Quartile (Q3) = 525 1st Quartile (Q1) = 445 Interquartile Range = Q3 - Q1 = 525 - 445 = 80

  23. Variance • The variance is a measure of variability that utilizes all the data. • It is based on the difference between the value of each observation (xi) and the mean (x for a sample, m for a population).

  24. Variance • The variance is the average of the squared differences between each data value and the mean. • If the data set is a sample, the variance is denoted by s2. • If the data set is a population, the variance is denoted by  2.

  25. Standard Deviation • The standard deviation of a data set is the positive square root of the variance. • It is measured in the same units as the data, making it more easily comparable, than the variance, to the mean. • If the data set is a sample, the standard deviation is denoted s. • If the data set is a population, the standard deviation is denoted  (sigma).

  26. Coefficient of Variation • The coefficient of variation indicates how large the standard deviation is in relation to the mean. • If the data set is a sample, the coefficient of variation is computed as follows: • If the data set is a population, the coefficient of variation is computed as follows:

  27. Example: Apartment Rents • Variance • Standard Deviation • Coefficient of Variation

  28. End of Chapter 3, Part A

More Related