1 / 96

Iterative Program Analysis

Learn about iterative program analysis concepts with Mooly Sagiv at Tel Aviv University, exploring mathematical background, abstract interpretation, and practical examples.

fordv
Download Presentation

Iterative Program Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Iterative Program Analysis Mooly Sagiv http://www.cs.tau.ac.il/~msagiv/courses/pa.html Tel Aviv University 640-6706 Textbook: Principles of Program Analysis Chapter 2.1 +6 (modified) Appendix A

  2. Outline • A gentle introduction constant propagation • Mathematical background • Chaotic iterations • Abstract interpretation • More examples • Kill/Gen Problems • Garbage variables • Pointer analysis • Stack • Heap (later)

  3. [x0, y0, z0] [x1, y0, z3] [x1, y0, z3] [x1, y7, z3] [x0, y0, z3] [x1, y7, z3] [x3, y7, z3] [x3, y7, z3] A Simple Example Program z = 3 x = 1 while (x > 0) ( if (x = 1) then y = 7 else y = z + 4 x = 3 print y )

  4. [x0, y0, z0] [x1, y0, z3] [x, y0, z3] [x1, y7, z3] [x1, y7, z3] [x0, y0, z3] [x3, y7, z3] [x3, y7, z3] A Simple Example Program z = 3 x = 1 while (x > 0) ( if (x = 1) then y = 7 else y = z + 4 x = 3 print y )

  5. [x0, y0, z0] [x1, y0, z3] [x, y0, z3] [x, y7, z3] [x1, y7, z3] [x0, y0, z3] [x3, y7, z3] [x3, y7, z3] A Simple Example Program z = 3 x = 1 while (x > 0) ( if (x = 1) then y = 7 else y = z + 4 x = 3 print y )

  6. [x0, y0, z0] [x1, y0, z3] [x, y0, z3] [x, y7, z3] [x, y7,z3] [x0, y0, z3] [x1, y7,z3] [x3, y7, z3] [x3, y7, z3] A Simple Example Program z = 3 x = 1 while (x > 0) ( if (x = 1) then y = 7 else y =z + 4 x = 3 print y )

  7. [x0, y0, z0] [x1, y0, z3] [x, y0, z3] [x1, y7, z3] [x, y7,z3] [x0, y0, z3] [x1, y7,z3] [x, y7,z3] [x3, y7, z3] [x3, y7, z3] A Simple Example Program z = 3 x = 1 while (x > 0) ( if (x = 1) then y = 7 else y =z + 4 x = 3 print y )

  8. [x0, y0, z0] [x1, y0, z3] [x, y0, z3] [x1, y7, z3] [x0, y0, z3] [x, y7,z3] [x, y7,z3] [x3, y7, z3] [x3, y7, z3] A Simple Example Program z = 3 x = 1 while (x > 0) ( if (x = 1) then y = 7 else y =z + 4 x = 3 print y )

  9. Computing Constants • Construct a control flow graph (CFG) • Associate transfer functions with control flow graph edges • Iterate until a solution is found • The solution is unique • But order of evaluation may affect the number of iterations

  10. Constructing CFG z =3 z = 3 x = 1 while (x > 0) ( if (x = 1) then y = 7 else y =z + 4 x = 3 print y ) x =1 while (x>0) if (x=1) y =7 y =z+4 x=3 print y

  11. Associating Transfer Functions z =3 e.e[z3] x =1 e.e[x1] e. if x 0 then e else  while (x>0) e. if x >0 then e else  if (x=1) e. if x 0 then e else  e. e [x1, y , z] y =7 y =z+4 e.e e.e[y7] e.e[ye(z)+4] x=3 e.e[x3] print y

  12. Iterative Computation [x0, y0, z0] z =3 e.e[z3]  x =1 e.e[x1] e. if x 0 then e else   while (x>0) e. if x >0 then e else   if (x=1) e. if x 0 then e else  e. e [x1, y , z]   y =7 y =z+4 e.e e.e[y7] e.e[ye(z)+4]  x=3 e.e[x3]  print y

  13. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x1, y0, z0] x =1 e.e[x1] e. if x 0 then e else   while (x>0) e. if x >0 then e else   if (x=1) e. if x 0 then e else  e. e [x1, y , z]   y =7 y =z+4 e.e e.e[y7] e.e[ye(z)+4]  x=3 e.e[x3]  print y

  14. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else   while (x>0) e. if x >0 then e else   if (x=1) e. if x 0 then e else  e. e [x1, y , z]   y =7 y =z+4 e.e e.e[y7] e.e[ye(z)+4]  x=3 e.e[x3]  print y

  15. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x1, y0, z3] while (x>0) e. if x >0 then e else   if (x=1) e. if x 0 then e else  e. e [x1, y , z]   y =7 y =z+4 e.e e.e[y7] e.e[ye(z)+4]  x=3 e.e[x3]  print y

  16. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x1, y0, z3] while (x>0) e. if x >0 then e else  [x1, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z]   y =7 y =z+4 e.e e.e[y7] e.e[ye(z)+4]  x=3 e.e[x3]  print y

  17. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x1, y0, z3] while (x>0) e. if x >0 then e else  [x1, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z]  y =7 y =z+4 [x1, y0, z3] e.e e.e[y7] e.e[ye(z)+4]  x=3 e.e[x3]  print y

  18. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x1, y0, z3] while (x>0) e. if x >0 then e else  [x1, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z]  y =7 y =z+4 [x1, y0, z3] e.e e.e[y7] e.e[ye(z)+4] [x1, y7, z3] x=3 e.e[x3]  print y

  19. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x1, y0, z3] while (x>0) e. if x >0 then e else  [x1, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z]  y =7 y =z+4 [x1, y0, z3] e.e e.e[y7] e.e[ye(z)+4] [x1, y7, z3] x=3 e.e[x3] [x3, y7, z3] print y

  20. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x, y0, z3] while (x>0) e. if x >0 then e else  [x1, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z]  y =7 y =z+4 [x1, y0, z3] e.e e.e[y7] e.e[ye(z)+4] [x1, y7, z3] x=3 e.e[x3] [x3, y7, z3] print y

  21. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x, y0, z3] while (x>0) e. if x >0 then e else  [x, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z]  y =7 y =z+4 [x1, y0, z3] e.e e.e[y7] e.e[ye(z)+4] [x1, y7, z3] x=3 e.e[x3] [x3, y7, z3] print y

  22. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x, y0, z3] while (x>0) e. if x >0 then e else  [x, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z]  y =7 y =z+4 [x, y0, z3] e.e e.e[y7] e.e[ye(z)+4] [x1, y7, z3] x=3 e.e[x3] [x3, y7, z3] print y

  23. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x, y0, z3] while (x>0) e. if x >0 then e else  [x, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z] [x, y0, z3] y =7 y =z+4 [x, y0, z3] e.e e.e[y7] e.e[ye(z)+4] [x1, y7, z3] x=3 e.e[x3] [x3, y7, z3] print y

  24. Iterative Computation [x0, y0, z0] z =3 e.e[z3] [x0, y0, z3] x =1 e.e[x1] e. if x 0 then e else  [x, y0, z3] while (x>0) e. if x >0 then e else  [x, y0, z3] if (x=1) e. if x 0 then e else  e. e [x1, y , z] [x, y0, z3] y =7 y =z+4 [x1, y0, z3] e.e e.e[y7] e.e[ye(z)+4] [x, y7, z3] x=3 e.e[x3] [x3, y7, z3] print y

  25. Order of evaluation • The solution is unique • Different orders may converge faster • Example order: Depth First Order

  26. Mathematical Background • Declaratively define • The result of the analysis • The exact solution • Allow comparison • Prove that the algorithm is sound by proving that the handling of atomic statements is sound

  27. Posets • A partial ordering is a binary relation : L  L  {false, true} • For all l  L : l  l (Reflexive) • For all l1, l2, l3 L : l1  l2, l2  l3  l1  l3 (Transitive) • For all l1, l2 L : l1  l2, l2  l1  l1 = l2 (Anti-Symmetric) • Denoted by (L,  ) • In program analysis • l1 l2 l1 is more precise than ll1 represents fewer concrete states than l2

  28. Example Posets • Total orders (N, ) • Powersets (P(S), ) • Powersets (P(S), ) • Constant propagation

  29. Posets • More notations • l1 l2  l2 l1 • l1 l2  l1 l2  l1 l2 • l1 l2  l2 l1

  30. Upper and Lower Bounds • Consider a poset (L,  ) • A subset L’  L has a lower boundl L if for all l’  L’ : l l’ • A subset L’  L has an upper boundu L if for all l’  L’ : l’  u • A greatest lower bound of a subset L’  L is a lower bound l0 L such that l  l0 for any lower bound l of L’ • A lowest upper bound of a subset L’  L is an upper bound u0 L such that u0  u for any upper bound u of L’ • For every subset L’  L: • The greatest lower bound of L’ is unique if at all exists • L’ (meet) a b = {a, b} • The lowest upper bound of L’ is unique if at all exists • L’ (join) ab =  {a, b}

  31. Complete Lattices • A poset (L,  ) is a complete lattice if every subset has least and upper bounds • L = (L, ) = (L, , , , , ) •  =   =  L •  =  L =   • Examples • Total orders (N, ) • Powersets (P(S), ) • Powersets (P(S), ) • Constant propagation

  32. Complete Lattices • Lemma For every poset (L,  ) the following conditions are equivalent • L is a complete lattice • Every subset of L has a least upper bound • Every subset of L has a greatest lower bound

  33. Cartesian Products • A complete lattice (L1, 1) = (L1, , 1, 1, 1, 1) • A complete lattice (L2, 2) = (, , 2, 2, 2, 2) • Define a Poset L = (L1 L2 ,) where • (x1, x2)  (y1, y2) if • x1  y1 and • x2  y2 • L is a complete lattice

  34. Finite Maps • A complete lattice (L1, 1) = (L1, , 1, 1, 1, 1) • A finite set V • Define a Poset L = (VL1 ,) where • e1  e2 if for all v  V • e1v  e2v • L is a complete lattice

  35. Chains • A subset Y  L in a poset (L,  ) is a chain if every two elements in Y are ordered • For all l1, l2  Y: l1  l2 or l2  l1 • An ascending chain is a sequence of values • l1  l2  l3  … • A strictly ascending chain is a sequence of values • l1  l2  l3… • A descending chain is a sequence of values • l1  l2  l3  … • A strictly descending chain is a sequence of values • l1  l2  l3  … • L has a finite height if every chain in L is finite • Lemma A poset (L,  ) has finite height if and only if every strictly decreasing and strictly increasing chains are finite

  36. Monotone Functions • A poset (L,  ) • A function f: L  L is monotoneif for every l1, l2 L: • l1  l2 f(l1 )  f(l2)

  37. Lemma 1 Consider a lattice L. f: L  L is monotone iff for all X  L: {f(z) | z X }  f({z | z X })

  38. Distributive (additive functions) Consider a lattice L. f: L  L is distributive if for all X  L: {f(z) | z X } = f({z | z X })

  39. f() f2() Fix(f) Red(f) f2() Ext(f) f()  Fixed Points • A monotone function f: L  L where (L, , , , , ) is a complete lattice • Fix(f) = { l: l  L, f(l) = l} • Red(f) = {l: l  L, f(l)  l} • Ext(f) = {l: l  L, l  f(l)} • l1  l2 f(l1 )  f(l2) • Tarski’s Theorem 1955: if f is monotone then: • lfp(f) =  Fix(f) =  Red(f)  Fix(f) • gfp(f) =  Fix(f) =  Ext(f)  Fix(f) gfp(f) lfp(f)

  40. Computing lfp(f) x =  while f(x)x do x = f(x)

  41. Chaotic Iterations • A lattice L = (L, , , , , ) with finite strictly increasing chains • Ln = L  L  …  L • A monotone function f: LnLn • Compute lfp(f) • The simultaneous least fixed of the system {x[i] = fi(x) : 1  i n } for i :=1 to n do x[i] =  WL = {1, 2, …, n} while (WL  ) do select and remove an element i  WL new := fi(x) if (new  x[i]) then x[i] := new; Add all the indexes that directly depends on i to WL x := (, , …, ) while (f(x)  x ) do x := f(x)

  42. Specialized Chaotic Iterations Chaotic(G(V, E): Graph, s: Node, L: Lattice, : L, f: E (L L) ){ for each v in V to n do dfentry[v] :=  df[v] =  WL = {1, 2, … n} while (WL  ) do select and remove an element u  WL for each v, such that. (u, v) E do temp = f(e)(dfentry[u]) new := dfentry(v) temp if (new  dfentry[v]) then dfentry[v] := new; WL := WL {v}

  43. [x0, y0, z0] 1 z =3 e.e[z3] 2 x =1 e.e[x1] e. if x 0 then e else  3 while (x>0) e. if x >0 then e else  4 if (x=1) e. if x 0 then e else  e. e [x1, y , z] 5 6  y =7 y =z+4 e.e e.e[y7] e.e[ye(z)+4] 7 x=3 e.e[x3] 8 print y

  44. Specialized Chaotic IterationsSystem of Equations S = dfentry[s] =  dfentry[v] = {f(u, v) (dfentry[u]) | (u, v)  E } FS:LnLn FS(X)[s] =  FS(X)[v]= {f(u, v)(X[u]) | (u, v)  E } lfp(S) = lfp(FS)

  45. Complexity of Chaotic Iterations • Parameters: • n the number of CFG nodes • k is the maximum outdegree of edges • A lattice of height h • c is the maximum cost of • applying f(e) •  • L comparisons • ComplexityO(n * h * c * k)

  46. Soundness • Every detected constant is indeed such • Every error will be detected • The least fixed points represents all occurring runtime states

  47. Completeness • Every constant is indeed detected as such • Every detected error is real • Every state represented by the least fixed is reachable for some input

  48. The Abstract Interpretation Technique • The foundation of program analysis • Goals • Establish soundness of (find faults in) a given program analysis algorithm • Design new program analysis algorithms • The main ideas: • Relate each step in the algorithm to a step in a structural operational semantics • Establish global correctness using a general theorem • Not limited to a particular form of analysis

  49. Galois Connections • Lattices Cand A and functions : C A and : AC • The pair of functions (, ) form Galois connectionif •  and  are monotone •  a  A • ( (a)) a •  c  C • c   ((C)) • Alternatively if: c  C  a A (c)  a iff c  (a) •  and  uniquely determine each other

  50.  Abstract  Descriptors of sets of stores Galois Connections  Concrete Sets of stores

More Related