1 / 8

平行线的性质和判定

平行线的性质和判定. 一 . 复习 1. 平行线的判定 2. 平行线的性质. 二 . 讲解例题. 例 1 :如图, AB∥CD ,直线 EF 分别交 AB 、 CD 与点 E 、 F , EG 平分∠ BEF ,∠ 1 = 72° 求∠ 2 的度数. 解:∵ AB∥CD (已知) ∴∠ EFD+∠1=180° (两直线平行,同旁内角互补) ∵∠ 1=72° (已知) ∴∠ EFD=108°( 等式的性质) ∵ EG 平分∠ BEF( 已知) ∴∠ 3=∠GEF=54° (角平分定义)

Download Presentation

平行线的性质和判定

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 平行线的性质和判定

  2. 一.复习1.平行线的判定2.平行线的性质

  3. 二.讲解例题 • 例1:如图,AB∥CD,直线EF分别交AB、CD与点E、F,EG平分∠BEF,∠1=72° • 求∠2的度数 解:∵AB∥CD(已知) ∴∠EFD+∠1=180°(两直线平行,同旁内角互补) ∵∠1=72°(已知) ∴∠EFD=108°(等式的性质) ∵EG平分∠BEF(已知) ∴∠3=∠GEF=54°(角平分定义) ∵AB∥CD(已知) ∴∠3=∠2(两直线平行,内错角相等) ∴∠2=54(等量代换)

  4. 如图,若AB∥EF,BC∥DE,求∠B+∠E的度数

  5. 例2:如图,BE平分∠ABC,CE平分∠BCD,∠1+∠2=90°求证:AB∥CD例2:如图,BE平分∠ABC,CE平分∠BCD,∠1+∠2=90°求证:AB∥CD 解:∵BE平分∠ABC,CE平分∠BCD(已知) ∴∠ABE=∠1,∠DCE=∠2(角平分定义) ∵∠1+∠2=90°(已知) ∴∠ABE+∠1+∠2+∠DCE=180°(等量代换) 即∠ABC+∠BCD=180° ∴AB∥CD(同旁内角互补,两直线平行)

  6. 练习:如图,AB⊥AD,CD⊥AD,∠1=∠2,直线AE、DF平行吗?为什么?练习:如图,AB⊥AD,CD⊥AD,∠1=∠2,直线AE、DF平行吗?为什么?

  7. 三.作业:1.如图,AD∥BC,BD平分∠ABC,∠A:∠ABC=2:1,求∠ADB的度数三.作业:1.如图,AD∥BC,BD平分∠ABC,∠A:∠ABC=2:1,求∠ADB的度数

  8. 2.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠DFB,CE与DF平行吗?为什么?2.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠DFB,CE与DF平行吗?为什么?

More Related