1 / 1

C. Blondel, W. Chaïbi, C. Delsart and C. Drag

y. x. Jet. detector : res. 65 µm FWHM 1 electron each 0.1 ms to 1 ms. z a F z 0 Détecteur. D. F. S. 7. C. 3. /. 2. e. 4. 2. m. 8. F. =. U. 6.  1 : Source and simple lens doublet ("einzellens") 2,5,9,10 : Deflection plates 3,6,8 : Simple lenses. 10. 0. 3.

Download Presentation

C. Blondel, W. Chaïbi, C. Delsart and C. Drag

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. y x Jet detector : res. 65 µm FWHM 1 electron each 0.1 ms to 1 ms z a F z0 Détecteur D F S 7 C 3 / 2 e 4 2 m 8 F = U 6  1 : Source and simple lens doublet ("einzellens") 2,5,9,10 : Deflection plates 3,6,8 : Simple lenses 10 0 3 q F h 4 5 12 Detector 2 4 : Wien filter 7 : Deflection 11 : Focalisation quadrupole 12 : Deceleration plates 13 : Interection zone 9 1 11 13 3 Longitudinal and transverse magnetic field coils ion detector détecteur 13 cm B//F solenoid solénoïde z0 2 m negative ion beam jet d’ion négatifs 62 cm laser laser transverse BF coils 23 cm 42 cm B = 1.9 µT B = 27.8 µT B = 56.1 µT B = 82 µT B = 110.4 µT B = 137.5 µT F ~ 291 V/m l = 596.89122 nm The local phase shfit Defining the momentum : One gets a wave-function B-dependent according to Magnetic phase Geometric phase The phase of the interferogram will thus change by Electron affinities Trajectory curvature will make a contribution at a higher order. The expected phase variation, at a fixed position on the detector, will be : Numerically : The shift of the envelope The fringe displacement is such that In the far-field approximation Comparing the gradient and the phase shift One gets: PHOTODETACHMENT MICROSCOPY IN A MAGNETIC FIELD C. Blondel, W. Chaïbi, C. Delsart and C. Drag Laboratoire Aimé Cotton, Univ Paris-sud, Bât. 505, Campus d’Orsay, 91405 Orsay Cedex, France Effect of a magnetic field : longitudinal case The principle of photodetachment microscopy the Green function is known Kramer et al., Europhys. Lett. 56, 471 (2001) Quantum parameters : 2-trajectory interference: same phase as for B=0 (invariance) Mean interfrange Nomber of rings 4-trajectory interference Principle: Y.N. Demkov et al., JETP Lett.34, 403 (1981) Photoionization microscopy: C. Nicole et al., Phys. Rev . Lett.88, 133001 (2002) Molecular photodetachment microscopy : C. Delsart et al., Phys. Rev . Lett.89, 183002 (2002) Geometrical effect on the interference patterns Photodetachment microscopy: C. Blondel et al., Phys. Rev . Lett.77, 3755 (1996) Experimental results Classical trajectories 100mA≡126µT=1.26G The analytic formula American Journal of Physics66, 38 (1998) F = 423 Vm-1 e = 1.2 cm-1 l0 = 0.045 mm a = 0.35 mm Measured pattern diameter D(I) Measured distance R(I) of the pattern centre to the source projection on the detector Calculated fit of the theoretical value of R(I) As expected: Experimental setup Effect of a magnetic field : transverse case Trajectory and fringe shifts ? Experimental results Influence of a magnetic field on the interference phase General problem: in the presence of a Lorentz force, will the trajectory shift be equal to the shift of the interference fringes ? F ~ 195 V/m B = 5.10-8 T Laser interferograms z0 = 0.514 m F between 150 and 450 V/m B0 What does the ring pattern become in the presence of a transverse magnetic field ? Dye laser Negative ion l = 535 @ 710 nm (~ 596 nm) P = 100 to 400 mW stability ~ 10 MHz for 30 min Dl/l (mes.) ~ 2.10-8 waist 20 to 40 µm B0 Beam cinetic energy : 300 to 500 eV  60 to 80 km.s-1 Do electron affinities vary with the magnetic field ? i.e. at 1st order proportionally to the B flux : FluorA(19F) = 27432.451(20) cm-1 OxygeneA(16O) = 11784.676(7) cm-1 SiliciumA(28Si) = 11207.246(8) cm-1 SulfurA(32S) = 16752.9760(42) cm-1 Eur. Phys. J.D33, 335 (2005) e neutral atom ± 8.10-3 cm-1 dispersion due to electric field inhomogeneities hn The interference phase remains invariant ! eA Isotopic shift OxygeneA(17O) = 11784.629(22) cm-1 A(18O) = 11784.606(20) cm-1 Phys. Rev.A64, 052504 (2001) negative ion Fringe shift vs. trajectory shift Fine structure of atoms and ions OxygeneE(2P1/2)E(2P3/2) = 177.084(14) cm-1 Sulfur 32S: E(2P1/2)  E(2P3/2) = 483.5352(34) cm-1 32S: E(3P1)  E(3P2) = 396.0587(32) cm-1 J. Phys.B39, 1409 (2006) j Si- Molecules OHA(16O1H) = 14740.982(7) cm-1 J. Chem. Phys.122, 014308 (2005) SH A(32S1H) = 18669.543(12) cm-1 J. Mol. Spec. 239, 11 (2006) SA0872b R e= 0.926 ± 0.008 cm-1 F = 427 Vm-1 ± 4 Vm-1 The interference pattern moves as a whole ! Accuracy : ± 1 µeV

More Related