1 / 37

Dynamic Female Labor Supply

Dynamic Female Labor Supply. Zvi Eckstein and Osnat Lifshitz. December 27, 2010 Based on the Walras-Bowley Lecture to the American Econometric Society Summer meeting, June 2008. Why Do We Study Female Employment (FE)?. Because they contribute a lot to US Per Capita GDP…. 3.

Download Presentation

Dynamic Female Labor Supply

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamic Female Labor Supply Zvi Eckstein and Osnat Lifshitz December 27, 2010 Based on the Walras-Bowley Lecture to the American Econometric Society Summer meeting, June 2008

  2. Why Do We Study Female Employment (FE)?

  3. Because they contribute a lot to US Per Capita GDP… 3

  4. Central Question Why Did Female Employment (FE) Rise Dramatically?

  5. Because Married FE Rose…..! 5

  6. Why did Married Female Employment (FE) Rise Dramatically?

  7. Main Empirical Hypotheses • Schooling Level increase (Becker) • Wage increase/Gender Gap decline Heckman and McCurdy(1980), Goldin(1990), Galor and Weil(1996), Blau and Kahn(2000), Jones, Manuelli and McGrattan(2003), Gayle and Golan(2007) • Fertility decline Gronau(1973), Heckman(1974), Rosensweig and Wolpin(1980), Heckman and Willis(1977), Albanesi and Olivetti(2007) Attanasio at.al.(2008) • Marriage decline/Divorce increase Weiss and Willis(1985,1997), Weiss and Chiappori(2006) • Other – (unexplained)

  8. Schooling Level Increase

  9. Wage increase – Gender Gap decline 10

  10. Fertility Decline Ref. by cohort 11

  11. Marriage Declines – Divorce Increases 13

  12. What are the Other Empirical Hypotheses? • Social Norms Fernandez, Fogli and Olivetti(2004), Mulligan and Rubinstein(2004), Fernandez (2007) • Cost of Children Attanasio, Low and Sanchez-Marcos(2008)Albanesi and Olivetti(2007) • Technical Progress Goldin(1991), Greenwood et. al.(2002), Will show up as a cohort effects..

  13. Post baby-boomers Cohort’s FE stabilized Employment rates by Age 15

  14. An Accounting Exercise • Measure female’s employment due to: • Schooling Levelincrease • Wageincrease/Gender Gap decrease • Fertilitydecline • Marriagedecline/Divorcegrowth • The “unexplained” is Others Lee and Wolpin, 2008

  15. An Accounting Exercise • Need an empirical model • Use Standard Dynamic Female Labor Supply Model – Eckstein and Wolpin 1989 (EW): “old” model Later extensions (among others..): van der Klauw, 1996, Altug and Miller, 1998, Keane and Wolpin, 2006 and Ge, 2007.

  16. Sketch of the Model • Extension of Heckman (1974) • Female maximizes PV utility • Chooses employment (pt = 1 or 0) • Takes as given: • Education at age 22 • Husband characteristics • Processes for wages, fertility, marital status • Estimation using SMM and 1955 cohorts from CPS Model

  17. Estimation Fit – 1955 cohort FE

  18. Estimation Fit – 1955 cohort FE

  19. Estimation Fit – 1955 cohort FE

  20. Back to Accounting Exercise • For the 1955 cohort we estimated: p55= P55(S, yw, yh, N, M) for each age • Contribution of Schooling of 1945 cohort (S45) for predicted FE of 1945 cohort is: predicted p45= P55(S45, yw55, yh55, N55, M55) • ….Schooling and Wage predicted p45= P55(S45, yw45, yh45, N55, M55) • ….Etc

  21. FE by Age per Cohort

  22. Accounting for changes in FE: 1945 cohort Dynamic Model Age Group: 28-32 1955: Actual: 65% Fitted: 65% Actual 1945 49% 1 - Schooling 63% 1+ 2 Wage 63% + 3 Children 61% + 4 Marital Status 61% Other 12% Age Group: 38-42 1955:Actual: 74% Fitted: 74% Actual 1945 68% 1 - Schooling 71% 1+ 2 Wage 69% + 3 Children 69% + 4 Marital Status 69% Other 1% Early age total difference 12% is Other

  23. Goodness of Fit Tests for the Three Models

  24. Accounting for the change in FE:Cohorts of 1925, 30, 35 based on 1955

  25. Accounting for the change in FE:Cohorts of 1940, 45, 50: based on 1955

  26. Accounting for the change in FE:Cohorts of 1960, 65, 70, 75: based on 1955 What are the missing factors for “other”? 37

  27. What is missing factor for early ages? • Childcare cost if working • Change 1 parameter (a4) – get perfect fit • 1945 cohort childcare cost: $3/hour higher • 1965 cohort childcare cost: $1.1/hourlower • 1975cohort childcare cost: $1.1/hourlower

  28. What is missing factor for all ages? • Childcare cost if working • Value of staying at home • Change 2 parameters (a1,a4) – get perfect fit • 1935,1925 cohorts childcare cost: $3.2/hour higher • 1935 cohort leisure value: $4.5/hourhigher • 1925cohort leisure value: $5/hourhigher How can we explain results?

  29. Actual and Predicted Employment Rates 1940 Cohort

  30. Actual and Predicted Employment Rates 1930 Cohort

  31. How can we explain results? • Change in cost/utility interpreted as: • Technical progress in home production • Change in preferences or social norms How do we fit the aggregate employment/participation?

  32. Aggregate fit Simulation • Simulate the Employment rate for all the cohorts: 1923-1978. • Calculate the aggregate Employment for each cohort at each year by the weight of the cohort in the population. • Compare actual to simulated Employment 1980-2007.

  33. Predicted Aggregate Female Employment Rates Dynamic Model

  34. Predicted Aggregate Female Employment Rates by Cohort and Age - Dynamic Model

  35. Alternative Modeling for Explaining “Other Gap” • Unobserved heterogeneity regarding leisure/cost of children • Bargaining power of women changes • Household game: a “new” empirical framework 46

  36. Concluding remarks We demonstrate the gains from using Stochastic Dynamic Discretemodels: Dynamic selection method, rational expectations, and cross-equations restrictions are imposed Accounting for alternative explanations for rise in US Female Employment Better fit than static models (new version) Education – 35% ofincrease in Married FE Other – 25-45% ofincrease in Married FE Change in two parameters close the Other Gap 47

  37. Thanks!! Thanks!!

More Related