1 / 34

Algebra 1 Notes: Probability Part 3: Compound Probability

Learn how to find probabilities of compound events, identify dependent vs. independent events, and more. Solve examples to grasp the concepts effectively.

francisa
Download Presentation

Algebra 1 Notes: Probability Part 3: Compound Probability

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Algebra 1 Notes:Probability Part 3:Compound Probability

  2. Objectives • Find the probability of compound events • Identify which events are dependent and independent • Identify which events are mutually exclusive and mutually inclusive • Find the probability of mutually inclusive and mutually exclusive events

  3. Vocabulary • Simple Event • One event occurs. We did this already.

  4. Compound Probability The probability of two events occurring is the product of the probability of A and the probability of B. P(A and B) = P(A) • P(B)

  5. Vocabulary • Independent Events • The first event does NOT effect the second event • Dependent Events • The first event DOES effect the second event

  6. Example 1 • A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. • Drawing a red chip, replacing it, then drawing a green chip • Independent • P(red, green) =

  7. Example 1 • A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. • Drawing a red chip, replacing it, then drawing a green chip • Independent • P(red, green) = •

  8. Example 1 • A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. • Drawing a red chip, replacing it, then drawing a green chip • Independent • P(red, green) = • =

  9. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. b) Selecting two yellow chips without replacement. Dependent P(yellow, yellow) =

  10. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. b) Selecting two yellow chips without replacement. Dependent P(yellow, yellow) = •

  11. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. b) Selecting two yellow chips without replacement. Dependent P(yellow, yellow) = • =

  12. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. c) Choosing green, then blue, then red, replacing each chip after it is drawn. Independent P(green, blue, red) =

  13. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. c) Choosing green, then blue, then red, replacing each chip after it is drawn. Independent P(green, blue, red) = •

  14. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. c) Choosing green, then blue, then red, replacing each chip after it is drawn. Independent P(green, blue, red) = • •

  15. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. c) Choosing green, then blue, then red, replacing each chip after it is drawn. Independent P(green, blue, red) = • • =

  16. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. d) Choosing green, then blue, then red, without replacing each chip. Dependent P(green, blue, red) =

  17. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. d) Choosing green, then blue, then red, without replacing each chip. Dependent P(green, blue, red) = •

  18. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. d) Choosing green, then blue, then red, without replacing each chip. Dependent P(green, blue, red) = • •

  19. Example 1 A bin contains 8 blue chips, 5 red chips, 6 green chips, and 2 yellow chips. Find each probability. d) Choosing green, then blue, then red, without replacing each chip. Dependent P(green, blue, red) = • • =

  20. Complements A complement is one of two parts that make up a whole (Probability of one). P(green) P(not green) sum of probabilities

  21. Mutually Exclusive If two events, A and B, are mutually exclusive, then the probability that either A or B occurs is the sum of their probabilities. We did these already too. P(A or B) = P(A) + P(B)

  22. Example 2 Alfred is going to the Lakeshore Animal Shelter to pick a new pet. Today, the shelter has 8 dogs, 7 cats, and 5 rabbits available for adoption. If Alfred randomly picks an animal to adopt, what is the probability that the animal would be a cat or a dog? P(cat or dog)

  23. Example 2 Alfred is going to the Lakeshore Animal Shelter to pick a new pet. Today, the shelter has 8 dogs, 7 cats, and 5 rabbits available for adoption. If Alfred randomly picks an animal to adopt, what is the probability that the animal would be a cat or a dog? P(cat or dog) = P(cat) + P(dog) =

  24. Example 2 Alfred is going to the Lakeshore Animal Shelter to pick a new pet. Today, the shelter has 8 dogs, 7 cats, and 5 rabbits available for adoption. If Alfred randomly picks an animal to adopt, what is the probability that the animal would be a cat or a dog? P(cat or dog) = P(cat) + P(dog) = +

  25. Example 2 Alfred is going to the Lakeshore Animal Shelter to pick a new pet. Today, the shelter has 8 dogs, 7 cats, and 5 rabbits available for adoption. If Alfred randomly picks an animal to adopt, what is the probability that the animal would be a cat or a dog? P(cat or dog) = P(cat) + P(dog) = + =

  26. Example 2 Alfred is going to the Lakeshore Animal Shelter to pick a new pet. Today, the shelter has 8 dogs, 7 cats, and 5 rabbits available for adoption. If Alfred randomly picks an animal to adopt, what is the probability that the animal would be a cat or a dog? P(cat or dog) = P(cat) + P(dog) = + = =

  27. Inclusive -overlap If two events, A and B, are inclusive, then the probability that either A or B occurs is the sum of their probabilities decreased by the probability of both occurring. P(A or B) = P(A) + P(B) – P(A and B)

  28. Example 3 A dog has just given birth to a litter of 9 puppies. There are 3 brown females, 2 brown males, 1 mixed-color female, and 3 mixed-color males. If you choose a puppy at random from the litter, what is the probability that the puppy will be male or mixed color? P(male or mixed color) =

  29. Example 3 A dog has just given birth to a litter of 9 puppies. There are 3 brown females, 2 brown males, 1 mixed-color female, and 3 mixed-color males. If you choose a puppy at random from the litter, what is the probability that the puppy will be male or mixed color? P(male or mixed color) = = P(male) + P(mixed color) – P(male and mixed color) =

  30. Example 3 A dog has just given birth to a litter of 9 puppies. There are 3 brown females, 2 brown males, 1 mixed-color female, and 3 mixed-color males. If you choose a puppy at random from the litter, what is the probability that the puppy will be male or mixed color? P(male or mixed color) = = P(male) + P(mixed color) – P(male and mixed color) = +

  31. Example 3 A dog has just given birth to a litter of 9 puppies. There are 3 brown females, 2 brown males, 1 mixed-color female, and 3 mixed-color males. If you choose a puppy at random from the litter, what is the probability that the puppy will be male or mixed color? P(male or mixed color) = = P(male) + P(mixed color) – P(male and mixed color) = + –

  32. Example 3 A dog has just given birth to a litter of 9 puppies. There are 3 brown females, 2 brown males, 1 mixed-color female, and 3 mixed-color males. If you choose a puppy at random from the litter, what is the probability that the puppy will be male or mixed color? P(male or mixed color) = = P(male) + P(mixed color) – P(male and mixed color) = + – =

  33. Example 3 A dog has just given birth to a litter of 9 puppies. There are 3 brown females, 2 brown males, 1 mixed-color female, and 3 mixed-color males. If you choose a puppy at random from the litter, what is the probability that the puppy will be male or mixed color? P(male or mixed color) = = P(male) + P(mixed color) – P(male and mixed color) = + – = =

  34. Homework Worksheet: Compound Probability

More Related