470 likes | 626 Views
Sensordatafusion. Egils Sviestins SaabTech Systems. Fusion levels (JDL model). Level 1 Objects. Level 2 Situations. Level 3 Intentions. Sources. Level 4 Process. Terminologi. Objekt. Situationer. Avsikter. Sensordata- fusion. Sensor- data. Informations- fusion. Andra data.
E N D
Sensordatafusion Egils Sviestins SaabTech Systems
Fusion levels (JDL model) Level 1 Objects Level 2 Situations Level 3 Intentions Sources Level 4 Process
Terminologi Objekt Situationer Avsikter Sensordata- fusion Sensor- data Informations- fusion Andra data Styrning Optimering
Modeller • Mätningar/information räcker inte • Modeller krävs! • Matematiska: • exempel • Idéer om verkligheten/”mentala” modeller • Begränsat av naturlagar, ekonomiska lagar, mänsklig förmåga etc. • Mätningar/information snävar in möjligheterna 1 2 3
Från verkligheten... Rån = stöld e.d. som utförs under hot om våld
Data processing: Improvement or Destruction? Raw information Sensor User Meaningful information
Early fusion... ... or late? WSC
Tidig fusion - för och emot • Mindre risk för tvetydigheter • Osäkerheter kan lättare beskrivas statistiskt - Bayes teori kan användas • Mindre robust m a p systematiska fel • Svårt hantera artskilda källor
The Radar Data Processing Chain Receiver Extractor Tracker A12 A07 Raw video Plots (R,az) Tracks (#,x,y,vx,vy,...) WSC
Filtering techniques • Linear regression (least squares batch processing) (hardly used in this context) • (70’s) Alpha-Beta • (80’s) Adaptive Kalman • (90’s) Interactive Multiple Model (IMM) • (2000’s ?) Non-linear filtering?
Linear regression x How to handle maneuvering targets??? t
Alpha-Beta filtering a and b are tuning constants between 0 and 1 Prediction step Updating step a=b=0: Measurement has no effect a=b=1: History has no effect
Kalman filtering Current state & uncertainties + Measurement & uncertainties = New state & uncertainties Like a-b-filter, but: Automatically optimizes a and b Best weighting between history and measurement Output includes estimated accuracy
Probability densities . x Update Prediction Measurement x
Associering • M målspår, N plottar: hur koppla samman? • OBS! Falska/saknade plottar, falska/saknade målspår • Närmaste granne? • Närmaste granne i statistiskt avstånd? • Global optimering statistiskt avstånd(minimera )? • Söka globalt mest sannolika koppling?Hur man än gör kan det bli fel. Motiverar multihypotes
Measurement-to-track association • Clusters with M measurements and N tracks • Form hypotheses like • Calculate probabilities for each hypothesis, e.g.
Bayesian track initiation Given a tentative track. Two hypotheses: H0: Track is false H1: Track is genuine Cn=p(H1): Credibility at scan n Obtained measurement z. Spurious plot density ps.
C 1 0 1 2 3 4 5 6 8 7 Scan # Initiation by Credibility • Required: Fast initiation and low false track rate • Sequential hypothesis testing • Credibility C » likelihood that a potential track is genuine cred
Andra sensorer • Bildalstrande • TV • FLIR (Forward Looking Infrared) • Millimetervågsradar • SAR (Synthetic Aperture Radar) • Icke bildalstrande • Störbäringsavtagare • Signalspaning • IRST (Infrared Search & Track) • Akustiska/Hydroakustiska sensorer • GPS
Filling coverage gaps Two radars Coverage gap Red single radar track lost and reinitiated Decentralized MRT may give confusing picture Centralized MRT performs well
Disadvantages of centralized multi-radar tracking • More sensitive to bias errors • Bias compensation required • Difficult to distribute CPU load on several processors • But not impossible • Existing data links often do not supply plot level data • Sometimes requires hybrid solutions • Sensors sometimes include extensive processing • Sometimes requires hybrid solutions
Strobes only 150 km
Reasons for Multi-Sensor Tracking • Radars can be jammed • Protective need to keep radars silent • Radars don’t always give best target detection • May support target identification
Target Type Identification • Based on • Direct observations • ESM / IRST measurements • Kinematics • Each track carries a vector with probabilitiesof possible target types. • Requires a library of target type characteristics
Example Lockheed F16 MiG-29 Mirage 2000 Lockheed U2 MiG-25 3 3 3 1 1 3 3 3 3 1 3 3 3 2 2 3 3 3 3 2 3 3 3 4 5 3 3 3 4 5 3 3 3 4 5 6 3 3 3 4 3 3 3 4 5 6 7 6 6 7
Kinematic typingOffline: Create Target Type Database • Max altitude • Min/Max speed as function of altitude • Max climb rate as function of altitude • Max distance from base • Max linear/turn acceleration as function of altitude
Step 1 - Collect flight data • Max altitude • Min/max velocity as function of altitude • Max climb rate • Max distance from base • <Max linear/turn acceleration as function of altitude> • Utilise meteorological data if available
Step 2 - Update Probability Vector CollectedFlight Data NewProbabilityVector [p´(F16),...] PreviousProbabilityVector Bayes’ Rule [p(F16),...] Target TypeDatabase
Avrundning • Sensordatafusion - uppgifter om enskilda objekt baserat (mest) på sensordata • Bygger oftast på matematiska modeller ochBayesiansk hypotesprövning • Många svåra områden återstår • Sensorer som ger knepiga data • Svårtolkade scenarier (t ex mark och undervatten) • Gemensam lägesbild (distribuerad fusion) • Fusion av starkt artskilda sensorer • Integration med infofusion