290 likes | 492 Views
祝: 新的一年里,身体倍儿棒!学习倍儿好!吃嘛嘛香 ! 干嘛嘛顺!. 祝大家文章多多!. 2012 年 2 月 10 日. 流体模拟. SAS 沉淀过程喷射流场的 CFD 模拟. 导 师:张敏华 教授 孙永达 教授 报告人:王召亚. 课题研究前期准备工作. 汇报内容. 0. 课题简介. 1. 思路整理. 2. 模型建立. 3. 体系选择. 4. 进展计划.
E N D
祝: 新的一年里,身体倍儿棒!学习倍儿好!吃嘛嘛香!干嘛嘛顺!
2012年2月10日 流体模拟 SAS沉淀过程喷射流场的CFD模拟 导 师:张敏华 教授 孙永达 教授 报告人:王召亚 课题研究前期准备工作
汇报内容 0. 课题简介 1. 思路整理 2. 模型建立 3. 体系选择 4. 进展计划
为使SAS微粒化产品形貌、粒度及分布可控,促进工业化生产,对其机理探索一直是研究的重点。一些研究者[ 6- 9]尝试利用相平衡、 液体射流、 传质和成核结晶等理论,并结合适当的简化假设[9]来解释SAS微粒形成控制机理,但因缺少超临界体系的基本物性数据和特定条件的限制,这些理论模型并不能普遍适用。 0 课题简介 01 课题背景 • SAS(超临界抗溶剂技术)技术在材料科学、食品加工和药物微细颗粒制备等方面成为研究的热点[1, 2]。药物微粉化是现代制药的基础,85%的化学及生物药以微粉为原料。 • SAS:操作温度低,有机溶剂残留少[3, 4],粒径小、分布窄,无污染、生物成分不易失活等优点[5]。 • 传统——研磨:尺寸分布太宽; • 喷雾干燥:溶质有效成分变性; • 流动能量粉碎:产品常常带有静电…… [1] Watson M S, Whitaker M J, Howdle S M , et al .Adv Mater [J] , 2002, 14(24) : 1802 -1804. [2] Martín A, Cocero M J. Adv Drug Deli Rev [J] ,2008, 60( 3) : 339-350. [3] Byrappa K, Ohara S, Adschiri T . Adv Dr ug Deli Rev[J] , 2008, 60(3) : 299-327. [4] Lee L Y, Lim L K, H ua J, et al . Chem Eng Sci [J] ,2008, 63(13) : 3366-3378. [5]Cocero M J, Ferrem S. [J]. Journal ofSupercritical Fluids, 2002, 22:237-245. [6] Mart A, Cocero M J. Adv Drug Deli Rev [J] ,2008, 60(3) : 339-350. [7] E. Reverchon, R. Adami, G. Caputo, I. De Marco. Spherical microparticles production by supercritical antisolvent precipitation:Interpretation of results[J]. The Journal of Supercritical Fluids, 2008, 47: 70–84. [8] Gokhale A, Khusid B, Dav e R N, et al. J of Supercri Fluids [J],2007, 43(2) : 341- 356. [9] Chvez F, Debenedett i P G, Luo J J, et al. Ind Eng Chem Res [J],2003, 42(13) : 3156 -3162.
关于微粒粒度及粒度分布控制的理论研究较少[10]。关于微粒粒度及粒度分布控制的理论研究较少[10]。 Nozzle exit >MCP >>MCP <MCP Jet break-up (atomization) Liquid droplets drying Diffusion controll Nucleation controll Conected nanoelements surface EMP Continuous surface EMP P>Pc,XCO2>XMCP[11] Hollow micro- particles with continuous surface Hollow micro- particles with connected nanoelements 02 课题研究进展 理论研究 [11] Mahshid Kalani,Robiah Yunus.Application of supercritical antisolvent method in drug encapsulation: a review. International Journal of Nanomedicine.
03 模型发展 SAS制粒模拟 SEDS制粒模拟 Lora等[12],首次对SAS过程建模,可以计算结晶产率 Jerzy Bałdyga等[16],SEDS,对(溶剂+反溶剂)互溶、不互溶分别建模,能够预测操作参数(T,P,VCO2,XNA)对PS的影响; Elvassore等[13],连续性方程包含进溶质的质量传递(三元),但仍假设液滴是静止的 Jerzy Bałdyga等[17],SEDS,讨论了超临界压力以上,宏观、介观、微观混合效应对PS、PSD的影响,并给出了过程放大规则。 A. Martín[14],实验数据,溶剂与反溶剂完全互溶体系,湍流(气体羽状喷射),能够预测PS及PSD; M. A. Tavares Cardoso等[15],低Re: 可以讨论溶液初始速度、初始浓度对PS、PSD的影响;判断沉淀室的几何构型对体系的适用性;证明了上浮效应(buoyancy effect)对微粒化设备的重要性; [12] M. Lora, A. Bertucco, I. Kikic, Simulation of the semicontinuous supercritical antisolvent recrystallization process, Ind. Eng. Chem.Res. 39 (5) (2000) 1487. [13] N. Elvassore, F. Cozzi, A. Bertucco, Modeling of particle formation in supercritical anti-solvent processes: diluted and concentrated regime,in: G. Brunner, I. Kikic, M. Perrut (Eds.), Proceedings of the Sixth International Symposium on Supercritical Fluids, Versailles, France,2003, p. 1635. [14] A. Martín, M. J. Cocero. Numerical modeling of jet hydrodynamics, mass transfer and crystallization kinetics in the supercritical antisolvent (SAS) process, J. of Supercritical Fluids, 32 (2004) 203–219 . [15] M.A. Tavares Cardoso, J.M.S. Cabral, A.M.F. Palavra,et al. CFD analysis of supercritical antisolvent (SAS) micronization of minocycline hydrochloride [J]. The Journal of Supercritical Fluids, 2008, 47 :247–258. [16] Jerzy Bałdyga, Dominik Kubicki, Boris Y. Shekunov, et al. Mixing effects on particle formation in supercritical fluids[J]. Chemical Engineering Research and Design, 2010, 8 8:1131–1141. [17] Jerzy Bałdyga, Rafał Czarnocki, Boris Y. Shekunov, et al. Particle formation in supercritical fluids—Scale-up problem[J]. chemical engineering research and design 8 8 (2010) 331–341.
实际意义 回流区影响的减弱: 使得到的产品微粒粒径更均一,产品粒径、形貌可控性提高,尤其是粒径量化可控性提高; 使设备利用度提高,对工业放大具有重要的经济意义; 考察喷嘴尺寸及喷入位置对流场的影响,及回流区对微粒PS及PSD的影响,进而探讨沉淀室结构对微粒粒度的影响。 理论意义 • SAS流体力学的理论研究: • 有助于认识沉淀过程及本质规律; • 有助于SAS微粒化过程的量化研究基础的奠定; • 有助于放大规律的研究,指导SAS设备的放大。 课题 04 课题及意义
1思路整理 课题开展总体思路 • 总结并分析实验及模拟结果,量化产品控制规律; • 提出回流区的影响因素及影响规律; • 提出现有设备的改善方案; 总结探讨 • 对模拟结果进行实验验证; • 与文献的模拟结果对比验证; 结果验证 • 改变各个物流进入沉降室的入口位置; • 改变喷嘴的长径比或改换喷嘴; • 改变喷嘴在沉降室中的高度 CFD模拟 • 确定实验体系; • 确定模拟控制参数; • 确定模拟参数; SAS实验
1.1 SAS实验 流量 浓度 压力 温度
1.2 CFD模拟 • 建立模型 • 根据实验设备建立物理模型,划分网格; • 初步建立数学模型,调整参数; • 确定并优化模型 • 检验模型的适用性及有效性; • 网格无关性检验; • CFD模拟计算 • 改变喷入位置等参数进行模拟计算;
1.3 模型验证 M.A. Tavares Cardoso等[18] 用CH2Cl2/CO2体系验证模型之后,直接应用于EtOH/CO2体系的CFD计算: (a)涡旋粘度;(b) CH2Cl2液柱喷射图[19];(c)CH2Cl2质量分数分布 [18]M.A. Tavares Cardoso, J.M.S. Cabral, A.M.F. Palavra,et al. CFD analysis of supercritical antisolvent (SAS) micronization of minocycline Hydrochloride[J],J. of Supercritical Fluids,47 (2008) 247–258 [19] E. Badens, O. Boutin, G. Charbit, Laminar jet dispersion and jet atomization in pressurized carbon dioxide, J. Supercrit. Fluids 36 (2005) 81.
[40] [40] [40] 1.3 模型验证 [34] [20] E. Reverchon, E. Torino, S. Dowy, et al. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization[J]. Chemical Engineering Journal 156 (2010) 446–458.
[21] [22] [23] [30] [29] 形貌不规整 [27] [28] [25] [24] [26] [26] 3. 体系选择 3.1放弃晶型微粒体系 [21]P. Subra,P. Berroya, A. Vega,et al. Process performances and characteristics of powders produced usingsupercritical CO2 as solvent and antisolvent[J]. Powder Technology 142 (2004) 13– 22. [22] Quan Ling Suo, Wen Zhi He, Yan Chun Huang, et al. Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization[J]. Powder Technology 154 (2005) 110 – 115. [23] Min-Soo KIM, Jeong-Soo KIM,Sung-Joo HWANG. Enhancement of Wettability and Dissolution Properties of CilostazolUsing the Supercritical Antisolvent Process: Effect of Various Additives[J]. Chem. Pharm. Bull. 58(2) 230—233 (2010). [24] Photchanathip Imsanguan, Suwassa Pongamphai,Supaporn Douglas, et al. Supercritical antisolvent precipitation of andrographolide from Andrographis paniculata extracts: Effect of pressure, temperature and CO2 flow rate[J]. Powder Technology 200 (2010) 246–253. [25] Sitaram P. Velaga, Stefan Bergh, Johan Carlfors. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process. European Journal of Pharmaceutical Sciences 21 (2004) 501–509. [26] I. Kikic, P. Alessi,F.Eva, M. Moneghini, et al. Supercritical antisolvent precipitation of atenolol: The influence of the organic solvent and of the processing approach[J]. J. of Supercritical Fluids 38 (2006) 434–441 [27] Nicola De Zordi, Ireneo Kikic, Mariarosa Moneghini, et al. Piroxicam solid state studies after processing with SAS technique[J]. J. of Supercritical Fluids 55 (2010) 340–347. [28] Sitaram P. Velaga , Raouf Ghaderi, Johan Carlfors. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process[J]. International Journal of Pharmaceutics 231 (2002) 155–166. [29] Photchanathip Imsanguan, Tanawan Yanothai,Suwassa Pongamphai, et al. PRECIPITATION OF PHARMACEUTICALS USING A SUPERCRITICAL ANTI-SOLVENT (SAS) DECHNIQUE: A PRELIMINARY STUDY. THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING.2011,89:529-535. [30] S. Bristow, T. Shekunov, B.Yu. Shekunov, et al. Analysis of the supersaturation and precipitation process with supercritical CO2 [J]. Journal of Supercritical Fluids 21 (2001) 257–271. [6] [5] [4]
Rifampicin (99.9%);DMSO(99.5%); CO2(99.9%); 沉淀室: 体积500ml, 直径50mm,喷嘴直径60 μm, 两个进口均在沉淀室顶部 沉淀室: 体积500ml, (实际367.3ml), 直径54.1mm, 喷嘴直径101 μm, 溶液进口在沉淀室顶部,CO2进口在侧壁 [31] SAS流程图[31] 3.2Rifampicin/DMSO/CO2体系 流程相似 AntisolventCO2 [31] Ernesto Reverchon, Iolanda De Marco. Supercritical antisolvent micronization of Cefonicid:thermodynamic interpretation of results. J. of Supercritical Fluids, 31 (2004) 207–215.
操作条件不同,得到的微粒形貌和粒度不同,便于考察其控制因素的影响操作条件不同,得到的微粒形貌和粒度不同,便于考察其控制因素的影响 微粒有多种形貌 [31] E. Reverchon, I.DeMarco,G.Della Porta, Rifampicin microparticles production by supercritical antisolvent precipitation, Int. J. Pharm. 243 (2002) 83–91.
40℃ —DMSO/CO2 - - DMSO /Rifampicin/CO2 120bar40℃ 90bar40℃ 考察参数:溶剂,浓度,压力.没有给出各条件下的平均粒径,而给出了PSD 图 90bar40℃ 实验数据较全 [31] E. Reverchon, I.DeMarco,G.Della Porta, Rifampicin microparticles production by supercritical antisolvent precipitation, Int. J. Pharm. 243 (2002) 83–91.
Cefonicid(99.9%);DMSO(99.5%); CO2(99%); 沉淀室:容积500ml,CO2入口在沉淀室的顶部,与溶液入口非同轴,喷嘴直径200μm,但作者已证明PS 和PSD 受喷嘴直径的影响很小[32]. 考察参数: T:40-60 ℃, P :90 - 180 bar,C0: 10 - 90 mg/mL ,CO2摩尔分率 0.5 - 0.98. 浓度的改变会改变微粒形貌; 压力的升高使得微粒PS 变小,PSD 变窄; CO2摩尔分率的提高使得PS 减小,PSD 变窄; 3.3 Cefonicid/DMSO/CO2体系[32] [32]Ernesto Reverchon , Iolanda De Marco. Supercritical antisolvent precipitation of Cephalosporins, Powder Technology 164(3) (2006) 139–146. [33] E. Reverchon, G. Caputo, I. De Marco, The role of phase behavior and atomization in the supercritical antisolvent precipitation, Ind. Eng. Chem.Res. 42 (25) (2003) 6406–6414.
180bar 40℃ 50mg/ml 40℃ 50mg/ml 实验数据较全 [32] [32] [31] [31] [31] Ernesto Reverchon, Iolanda De Marco. Supercritical antisolvent micronization of Cefonicid:thermodynamic interpretation of results. J. of Supercritical Fluids, 31 (2004) 207–215. [32]Ernesto Reverchon , Iolanda De Marco. Supercritical antisolvent precipitation of Cephalosporins, Powder Technology 164(3) (2006) 139–146.
重点讨论了温度和溶液浓度对微粒形貌和PS\PSD 的影响,并用三元相图中MCP 线的迁移来解释微粒形貌的形成机理[31]. 60℃ 微粒有多种形貌 [32] [31] [31] [31] Ernesto Reverchon, Iolanda De Marco. Supercritical antisolvent micronization of Cefonicid:thermodynamic interpretation of results. J. of Supercritical Fluids, 31 (2004) 207–215. [32]Ernesto Reverchon , Iolanda De Marco. Supercritical antisolvent precipitation of Cephalosporins, Powder Technology 164(3) (2006) 139–146.
4. 进展计划 4.12012年度学习计划 表1 2012年度月计划课题进展规划
1 2 3 5 6 4 4.2工作计划-总结实验 表2 Al(NO3)3·9H2O/EtOH/CO2体系,溶液流量2ml/min. 温度 32℃ 44℃ 32℃ 44℃ 52℃ 52℃ 压力 160bar 160bar 160bar 160bar 160bar 160bar 浓度 2%(W/W) 2%(W/W) 2%(W/W) 2%(W/W) 2%(W/W) 2%(W/W) CO2 流量 38g/ml 45g/ml 45g/ml 38g/ml 45g/ml 38g/ml
4.3 计算模型 喷射流场的CFD模拟 模型及参数修正 网格无关性检验 数学模型 确定最终的物理模型 检验模型的有效性
请老师们批评指正! Thank You!