1 / 36

Heavy Quarks + Vector Mesons in Medium

Heavy Quarks + Vector Mesons in Medium. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA School of Collective Dynamics in High-Energy Collisions “Medium Properties, Chiral Symmetry and Astrophysical Phenomena”

freira
Download Presentation

Heavy Quarks + Vector Mesons in Medium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heavy Quarks + Vector Mesons in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA School of Collective Dynamics in High-Energy Collisions “Medium Properties, Chiral Symmetry and Astrophysical Phenomena” Lawrence Berkeley National Laboratory, 22.05.07

  2. Outline 1.) Introduction: QGP + High-Energy Heavy-Ion Collisions  Achievements and Open Questions 2.) Heavy-Quark Probes (c,b)  Heavy-Quark Diffusion in the sQGP  RHIC Data 3.) Electromagnetic Radiation  Relation to Chiral Symmetry Restoration  In-Medium Vector Mesons  Dileptons: CERES/NA45 and NA60 4.)Conclusions

  3. 1.1 The “Little Bang” in the Laboratory e+ e- c,b r Au + Au QGP ?! (t ≈ 5fm/c) Hadron Gas (t ≈ 10fm/c) “Freeze-Out” Questions:• Thermalization? • QGP Signatures?? • Phase Transition???

  4. pt ≥ 6GeV: pQCD energy-loss (factor ~5 suppression) •  energy densities e0 ≈ 20 GeV fm-3 [Gyulassy, Vitev, Wang, …] • 2GeV ≤ pt ≤ 6GeV: p/p≈1, quark “scaling” in v2 •  quark coalescence [Greco et al, Fries et al, Hwa et al, …] 1.2 Achievements at RHIC:Towards the QGP Hadron Spectra(↔ bulk matter properties) • Momenta pt ≤ 2GeV: Hydrodynamic flow (v0,v2) •  early thermalization, QGP pressure [Shuryak, Heinz,…]  thermal medium, small viscosity, large opacity, partonic, To ≈ 2 Tc(indirect)

  5. Heavy Quarks • ►c- and b-quark energy loss, thermalization, “flow” ? • ►Q-Q bound states (J/y, Y) in sQGP? • Electromagnetic Emission • ►photons: q0=q , thermal radiation? • ►dileptons: (Mee )2= q02 - q2 > 0 : Vector spectral functions in medium? • Chiral Symmetry Restoration? - 1.3 Microscopic Probes: Understanding the QGP • Questions: • - prevalent interactions? • - d.o.f. (resonances in sQGP)? • - phase diagram + transition? •  Advanced studies required:

  6. 2.) Heavy-Quark Probes at RHIC Nuclear Modification Factor Elliptic Flow [Gyulassy etal ’05] RAA = (AA) / (pp) [Armesto et al ’05] pT [GeV] • substantial collectivity • bottom “contamination”? • factor 4-5 suppression • elastic E-loss, pQCD?! • Radiative energy loss smaller for c+b quarks • Elastic interactions? • Collective flow? Heavy-quark diffusion? • experimental tool: electron spectra D,B → eX c,b ?

  7. Microscopic Calculations of Diffusion: 2.1.1 Perturbative QCD [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore‘04] dominated by t-channel gluon-ex.: q c g c • e.g. T =300 MeV, as=0.4: ttherm~15 fm/cslow! (tQGP≤ 5 fm/c) 2.1 Heavy-Quark Diffusion in the QGP • Brownian • Motion: Fokker Planck Eq. [Svetitsky ’88,…] Q scattering rate diffusion constant

  8. _ _ “D” q q c c • no. of D-states (chiral+HQ symm.): • 8 per u and d, 4 for s • resonance cross section isotropic, • pQCD forward 2.1.2 Open-Charm Resonances in QGP “Light”-Quark Resonances [van Hees+ RR ’04] 1.4Tc • effective lagrangian with pseudo/scalar • + axial/vector “D-mesons” [Asakawa+ Hatsuda ’03] • parameters: mD=2GeV , GD, • mc=1.5GeV, mq=0

  9. 2.1.3 Thermal Relaxation of Heavy Quarks in QGP Charm: pQCD vs. Resonances Charm vs. Bottom pQCD “D” • tctherm ≈ tQGP ≈ 3-5 fm/c • bottom does not thermalize • factor ~3 faster with • resonance interactions!

  10. Nuclear Modification Factor Elliptic Flow • resonances → large charm suppression+collectivity, not for bottom • v2 “leveling off”’ characteristic for transition thermal → kinetic 2.2 Heavy-Quark Spectra at RHIC Relativistic Langevin Simulation: stochastic implementation of heavy-quark motion in expanding QGP- fireball with “hydrodynamic” evolution of bulk-matterbT , v2 [van Hees,Greco+RR ’05]

  11. 2.2.2 HQ Langevin Simulations: Hydro vs. Fireball Elastic pQCD (charm) + Hydrodynamics [Moore and Teaney ’04] as , g 1 , 3.5 0.5 , 2.5 0.25,1.8 • Tc=165MeV, • t ≈ 9fm/c • as and mD~gT • independent • (mD≡1.5T) • sgQ ~ (as/mD)2 • as=0.4 ↔ • D(2pT) ≈ 20 •  hydro ≈ • fireball • expansion [van Hees,Greco+RR ’05]

  12. Fragmentation only • large suppression from resonances, elliptic flow underpredicted (?) • bottom sets in at pT~2.5GeV 2.3 Single-e± at RHIC: Effect of Resonances • hadronize output from Langevin HQs (d-fct. fragmentation, coalescence) • semileptonic decays: D, B → e+n+X

  13. 2.3.2 Single-e± at RHIC: Resonances + Q-q Coalescence fqfrom p, K [Greco et al ’03] Elliptic Flow Nuclear Modification Factor • less suppression and morev2 • anti-correlation RAA ↔ v2 from coalescence (both up) • radiative E-loss at high pT?!

  14. coalescence essential for • consistent RAA and v2 • other mechanisms: • 3-body collisions, … [Liu+Ko’06, Adil+Vitev ‘06] 2.4 Model Comparisons to Recent PHENIX Data Single-e±Spectra[PHENIX ’06] • pQCD radiative E-loss with • 10-fold upscaled transport coeff. • Langevin with elastic pQCD + • resonances + coalescence • Langevin with 2-6 upscaled • pQCD elastic

  15. 2.5. Transport Properties of (s)QGP ‹x2›-‹x›2=Dx·t, Dx=2d·(T/mQ)/g, Ds=Dx/2d Spatial Diffusion Coefficient Charm-Quark Diffusion Viscosity-to-Entropy: Lattice QCD [Nakamura +Sakai ’04] • small spatial diffusion → strong coupling E.g. strongly coupled gauge theory (AdS/CFT):h/s=1/4p, DHQ≈1/2pT  resonances: DHQ≈4-6/2pT , DHQ ~ h/s ≈ (1-1.5)/p

  16. Applications • → Schröd.-Eq. • → bound states (sQGP)! • scattering states? imaginary parts? • → Lippmann-Schwinger Equation [Shuryak,Zahed, Brown ’04] - q-qT-Matrix  solve numerically [Mannarelli+RR ’05] 2.6 Potential Scattering in sQGP Lattice Q-Q Free Energy [Bielefeld Group ’04]

  17. 2.6.2 Charm-light Cross Sections with Lat-QCD Potential Temperature Evolution Channel Decomposition • interaction strength concentrated • close to threshold • meson and diquark channels • dominant

  18. 2.6.3 Friction Coefficients (Relaxation Rate): Lat-QCD vs. Resonance Model T ≈ 200 MeV T ≈ 250 MeV • uncertainty in potential extraction from lattice QCD • potential scattering comparable to resonance model close toTc

  19. 2.6.4 Charm-Quark Spectra at RHIC Elliptic Flow Nuclear Suppression Factor • nonperturbative effects stronger than elastic pQCD • radiative (2↔3) scattering?

  20. e- e+ q q _ e+ e- e+e- → hadrons r+w+f _ qq γ • Radiation Sources:Relevance: • Quark-Gluon Plasma: high mass + temp. • qq → e+e-, …M > 1.5GeV, T >Tc • Hot + Dense Hadron Gas: M ≤ 1 GeV • p +p - → e+e-, … T ≤ Tc - e+ e- p- p+ r 3.) Electromagnetic Radiation E.M. Correlation Function: Im Πem(M,q;mB,T) Im Πem(q0=q; mB,T)

  21. at Tc: Chiral Restoration • Low-Mass Dilepton Rate: r -meson dominated! ImPem ~ [ImDr+ImDw /10+ImDf /5] • Axialvector Channel:p±ginvariant mass-spectra~ Im Da1(M) ?! 3.2 EM Radiation and Chiral Symmetry ~ “r - a1(1260)” (chiral partners) Axial-/Vector in Vacuum pQCD continuum

  22. 3.3 Medium Effects: Hadronic Many-Body Theory > > [Chanfray et al, Herrmann et al, RR et al, Weise et al, Koch et al, Post et al, Eletsky et al, Oset et al, …] Dr (M,q;mB ,T) = [M 2- mr2 –Srpp –SrB -SrM ] -1 r-Propagator: r B*,a1,K1... r Sp SrB,M = Srpp = r-Selfenergies: N,p,K… Sp Constraints: - vacuum decays: B,M→ rN, rp, ... - scattering data:gN ,gA , pN→rN - QCD sum rules Nuclei rN=0.8r0 [Ko et al ’92, Klingl et al ’97, Leupold et al ’98] gN gA p-ex [Urban et al ’98]

  23. rB /r0 0 0.1 0.7 2.6 Model Comparison [Eletsky etal ’01] [RR+Wambach ’99] 3.3.2r-Meson Spectral Functions at SPS Hot+Dense Matter Hot Meson Gas [RR+Wambach ’99] [RR+Gale ’99] • r-meson “melts” in hot and dense matter (→ pQCD continuum) • baryon densitymore important than temperature • reasonable agreement between models

  24. 3.4 Pb-Au Collisions at SPS: CERES/NA45 → Evolve dilepton rates over thermal fireball QGP+Mix+HG: • T0≈205MeV, Tfo≈110MeV • QGP contribution small • medium effects onr-meson!

  25. quantitative theory? 3.5 In-In at SPS: Dimuons from NA60 [PRL ’06] • excellent mass resolution and statistics • for the first time, dilepton excess spectra could be extracted!

  26. [van Hees +RR ‘06] 3.5.2 Dimuon Excess Spectra at SPS • Central In-In fireball: T0-fo=195→120MeV, Tc=175MeV, tFB=7fm Full Spectral Functions Switch off Medium Effects • predicted ”melting”-r confirmed, average (Gr)med ≈ 350MeV ≈ mr/2 • relative strength of thermal sources fix, absolute yield ↔ fireball lifetime • baryon effects essential; probing matter close to Tc!?

  27. 3.6 Chiral Virial Approachvs. NA60 • chiral reduction of scatt. ME’s + low-density expansion • also: compare fireball vs. hydrodynamics [Dusling,Teaney+Zahed ’06] [van Hees+RR ‘06] • good agreement fireball - hydro (pT-spectra!) • lack of broadening

  28. 3.7 NA60pT-Spectra Fireball + Many-Body Hydro + Chiral Virial • theory slopes • too soft • ok with data • hadronic emission • prevalent [Dusling+Zahed ’06] [van Hees+RR ’06] • freezeout-r: g-factor! good model agreement • other fireball model: harder slopes, QGP dominant at M≥1GeV [Renk+ Ruppert ’06]

  29. 4.) Summary and Conclusions • Heavy quarks probe the (s)QGP: strong suppression, collectivity • Importance of elastic collisions; need explicit charm • pQCD not enough, resonances in sQGP?! • Microscopic description (lattice QCD potentials, correlators) • Electromagnetic probes are becoming a precision tool • Equilibrium radiation from QCD matter!? • Average r-meson width G≈mr/2 (G→mr toward Tc) • T- and mB-dependence of bare parameters in the Lagrangian? • hard exp. pT-spectra

  30. 3.3 Dilepton Emission Rate: Hadron Gas vs. QGP • “matching” of HG and QGP • emission close to Tc • In-Medium Reduction of • “Quark-Hadron Duality” • Threshold ?!

  31. 4.3 NA60pT-Spectra vs. Hadronic Many-Body • improved freezeout-r (g-factor!) + Drell-Yan (pT>1.5GeV) • approx. agreement (local slopes?!) See parallel talks by H.van Hees, J.Ruppert

  32. - q-qT-Matrices 3.2 Selfconsistent T-Matrix and Selfenergy [Mannarelli+RR ’05] T=1.2Tc T=1.5Tc T=1.75Tc • assume mq(gluon)=0.1GeV • transition from bound (1.2Tc) • to resonance states! • quark-width≈0.3GeV≈(2/3fm)-1 • (≈ mass ↔ liquid!?) • colored states, equat. of state? Quark Self- Energy T=1.5Tc

  33. WA98 “Low-qt Anomaly” • addt’l meson-Bremsstrahlung • pp→ ppgpK→pKg • substantial at low qt [Liu+ RR’05] 5.) Electromagnetic Probes 5.1.1 Thermal Photons I : SPS Expanding Fireball + pQCD • pQCD+Cronin at qt >1.6GeV •  T0=205MeV suff., HG dom. [Turbide,RR+Gale’04]

  34. 5.1.2 Thermal Photons II: RHIC • thermal radiation qt<3GeV ?! • QGP window 1.5<qt<3GeV ?! • also: g-radiation off jets • shrinks QGP window qt<2GeV ?! [Gale,Fries,Turbide,Srivastava ’04]

  35. 5.3.2 Dileptons II: RHIC [R. Averbeck, PHENIX] [RR ’01] QGP • low mass: thermal! (mostly in-medium r) • connection to Chiral Restoration: a1 (1260)→ pg ,3p • int. mass:QGP (resonances?)vs.cc → e+e-X (softening?) -

  36. 4.2.4 NA60 Data: Chiral Virial Approach • also compare fireball vs. hydrodynamics [ van Hees+RR ‘06] [Dusling,Teaney+Zahed ‘06] • lack of broadening • good agreement hydro - fireball

More Related