1 / 64

Suran, M. D., Ruder, H., Popescu, N.A., Nedelcu, A., Pricopi, D., Badescu, O .

DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1.3M. Suran, M. D., Ruder, H., Popescu, N.A., Nedelcu, A., Pricopi, D., Badescu, O . E-mail: suran@aira.astro.ro. Ce exista in prezent in Romania ?. Telescopes. STANDARDE DE TELESCOAPE.

freja
Download Presentation

Suran, M. D., Ruder, H., Popescu, N.A., Nedelcu, A., Pricopi, D., Badescu, O .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DEZVOLTAREA LA STANDARDE EUROPENEA ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1.3M Suran, M. D., Ruder, H., Popescu, N.A., Nedelcu, A., Pricopi, D., Badescu, O. E-mail: suran@aira.astro.ro

  2. Ce exista in prezent in Romania ? Telescopes

  3. STANDARDE DE TELESCOAPE • Standard national; • Standard regional (ex. Balcanic); • Standard international: • European (ESO); • American (US+Canada).

  4. Prezentul ProiectTELESCOP DE 1.3Mstandard european actual (2010+) Istoria telescoapelor de 1.3m dateaza inca din anii 1789 (telescopul lui W. Herschel). Punctul de plecare: Telescop ‘clasic’ secol XX: • actionat manual • plasat in ‘conditii normale’ (seeing ~1.5) • care observa ‘obiecte individuale’: • la o magnitudine limita (5, B, 100s) ~ 20-22mag • plasat in Europa continentala. • avand un randament maxim de 10-30 obiecte observabile/an Scopul final al proiectului TELEROM: • Maximizarea cantitativa si calitativa a datelor de observatie colectate cu un telescop de 1.3m, la nivelul anilor 2009+; • Telescop comparativ si competitiv cel putin cu cele balcanice de 2-2.3m ( cresterea vizibilitatii noastre astronomice in Balcani cel putin !) ( telescop mai mic pus in sit bun = telescop mare pus in sit prost!!!!!) • Recuperarea ramanerii in urma observationale de peste 50 ani in domeniu ( ~108obiecte/5ani !)

  5. TELESCOP ROBOTIC DE 1.3MDE CE? Istoria telescoapelor de 1.3m dateaza inca din anii 1789 (telescop W. Herschel). Telescoape de 1.3m pot fi: • Telescoape de studiu de obiecte individuale si actionat manual – telescop care prezinta un randament foarte scazut: 10-30 obiecte pe an – telescop al secolelor XVIII, XIX, XX. • Telescoape pentru studii de follow-up – adancirea studiilor de monitorizare efectuate deja cu telescoape (robotice/spatiale) de apertura A: • telescoape de la sol – necesar apertura: A< A’=1.3m • telescoape spatiale – necesar apertura: 2.5A< A’=1.3m>2.5A (MOST/CoRoT) Randamentul acestor telescoape ramane la 10-30 obiecte pe an. • Telescoape robotice de monitorizare si cautare de obiecte(open/closed loop) (2000+) Randamentul telescopului: ~108-109 obiecte/5-10 ani.

  6. TELESCOP ROBOTIC DE 1.3MDE CE? (Wikipedia) • A robotic telescope is an astronomical telescope and detector system that makes observations without the intervention of a human. Most robotic telescopes are small telescopes, A < 1.5m. • Robotic telescopes are complex systems that typically incorporate a number of subsystems. These subsystems include devices that provide • telescope pointing capability, • operation of the detector (typically a CCD camera), • control of the dome or telescope enclosure, • control over the telescope's focuser, • detection of weather conditions, • and other capabilities. Frequently these varying subsystems are presided over by a master control system, which is almost always a software component. • Robotic telescopes operate under closed loop or open loop principles. • In an open loop system, a robotic telescope system points itself and collects its data without inspecting the results of its operations to ensure it is operating properly. • A closed loop system has the capability to evaluate its operations through redundant inputs to detect errors. A common such input would be position encoders on the telescope's axes of motion, or the capability of evaluating the system's images to ensure it was pointed at the correct field of view when they were exposed.

  7. TELESCOP ROBOTIC DE CE? STATISTICA Wikipedia (robotic telescope list)

  8. Telescoape ‘internationale’ de 1.2m - 1.5mlistate pe WIKIPEDIA

  9. TELESCOP ROBOTIC DE 1.3MDE CE? STATISTICA Wikipedia (robotic telescope list)

  10. TELESCOP DE 1.3M. DE CE? Exemple de telescoape moderne (1990+) de 1.3m (robotice/open loops, fara feedback) : • OGLE: telescop polonez in Chile (1992+), optic (BVI), ~400 milioane de stele monitorizate, 30 TB data , 2*1011 photometric measurements, ~1 milion stele variabile, 8 noi exoplanete, 4000 microlensing events; • 2MASS: 2 telescoape identice US, Chile (1997-2001), IR (J,H,K), ~300 milioane stele + 100 milioane galaxii monitorizate (mag. limita ~14); • SMARTS: Yale telescope (2003+)/Chile,, optic (BVRI), • PAIRITEL:SAO/US, robotic, transient type, equiv. SDSS (2.5m) (lim.mag.22.5,5,500s,R) • SKYMAPPER: telescop MSO/Siding Spring , robotic/closed loop, VERY WIDE FIELD, equiv. SDSS(2.5m), ~ 1 miliard de obiecte, 300TB data, (lim.mag.23,5,100s, g) ; • EULER (Geneva, La Silla/Chile), STELLAI,II (IAC), RCT (US/Kitt Peak), MERCATOR (Belgia/Canary Islands) NOI: incepem investitia (ANCS/Proiect POSCEE O2.1.2 Nr. 651 ???) ca un telescop de 1.3m normal, ca in final sa ajungem la UN STANDARD NOU ESO (2005+), imprumutat din standardul american al telescopului ‘inteligent’ RAPTOR (Los Alamos): Telescop inteligent = Telescop robotic/closed loop (cu feedback/autocontrol cu prioritati) autonom + remote control + wide field (0.5deg),  telescop automat inteligent de tip multiplex + telescop 40cm de cautare cu soft aditional de recunoastere de paternitati + alerta + autocontrol + + follow up inteligent (cu prioritati) tehnici de supercomputing  timp de exploatare > 10ani. • Cel putin analog (ca performante) telescoapelor de 1.3m OGLE & 2MASS & SKYMAPPER (?) • productivitate efectiva de lucru (ca telescop ROBOTIC INTELIGENT): > 105 -106 obiecte monitorizate/noapte!

  11. TELESCOP DE 1.3MDE CE? 2 MASS telescope  SMARTS (Cerro Tololo, Chile) OGLE telescope ( Chile) SKYMAPPER telescope ( Australia)

  12. Telescop 1.3m – capabilitati de lucru –OGLE Polish telescope The Optical Gravitational Lensing Experiment or OGLE is a Polishastronomical project based at Warsaw University that is chiefly concerned with discovering dark matter using the microlensing technique. Since the project began in 1992, it has discovered several extrasolar planets as a side benefit. The project is led by professorpl:Andrzej Udalski from Warsaw University, who is a co-author of the discovery of OGLE-2005-BLG-390Lb. The main targets of the experiment are the Magellanic Clouds and the Galactic Bulge, because of the large number of intervening stars that can be used for microlensing during a stellar transit. Most of the observations have been taken at the Las Campanas Observatory in Chile. Cooperating institutions include Princeton University and the Carnegie Institution. The project has been divided into three phases, OGLE-I (1992-1995), OGLE-II (1996-2000), and OGLE-III (2001-2009). OGLE-I was the project pilot phase; for OGLE-II, a telescope was specially constructed in Poland and shipped to Chile. OGLE-III was primarily devoted to detecting transiting planets; the two fields observed during this phase were in the direction of the Galactic Bulge and the constellation Carina. [1] Also, first planets using the microlensing technique were detected during that phase. In 2009, the fourth phase, OGLE-IV, starts using 32-chip mosaic CCD camera. The main goal for that phase is to increase the number of planetary detections using microlensing. • The NEW OBJECTS in the OGLE-III SKY (NOOS) system is a real time detection system designed for detection of all kinds of objects that emerge from the deep Universe, i.e. from below our typical detection limit, and are found in the OGLE regularly monitored fields. These may be supernovae (SNe), gravitational microlensing of very faint objects, cataclysmic variables or anything else that brightens significantly. • Presently OGLE-III frequently observes 102 fields in the Galactic bulge (35 square degrees), 40 fields in the Small Magellanic Cloud (13 square degrees) and 116 fields in the Large Magellanic Cloud (38 square degrees). • About 400 millions stars were detected in this area. • ~1 milion de stele variabile • 4000 microlensing events, 8 exoplanete; Main OGLE research fields and results: •  •• Extrasolar Planets •  •• Gravitational Lensing & Microlensing •  •• Variable Stars •  •• Photometric Maps •  •• Astrometry •  •• Interstellar Extinction •  •• Other Latest Scientific Results • 09-10-08: Long-Period Variables in the Large Magellanic Cloud • 09-05-13: Optical Depth to the LMC from OGLE-II Data • 09-03-15: RR Lyrae Stars in the Large Magellanic Cloud • 09-01-30: OGLE-III Photometric Maps of the SMC • 08-11-23: Type II Cepheids and Anomalous Cepheids in the Large Magellanic Cloud • 08-08-19: Classical Cepheids in the Large Magellanic Cloud • 08-08-17: New OGLE Real Time Data System: (XROM) X-ray Sources Monitoring • 08-08-17: New OGLE Real Time Data System: (RCOM) RCrB Variable Stars Monitoring • 08-07-25: Triple Mode and 1O/3O Double Mode Cepheids in the LMC • 08-07-24: OGLE-III Photometric Maps of the LMC • 08-06-02: A Low-Mass Planet with a Possible Sub-Stellar-Mass Host • 08-02-14: Discovery of a Jupiter/Saturn Analog: OGLE-2006-BLG-109Lbc

  13. Telescop 1.3m – capabilitati de lucru –OGLE Polish telescope • OGLE III, program de monitorizare robotica: • Galactic Bulge • LMC • SMC

  14. Telescop 1.3m – capabilitati de lucru –OGLE Polish telescope OGLE III, program de monitorizare robotica de stele pulsante de tip RR Lyrae in LMC si exemple de curbe de lumina obtinute.

  15. Telescop 1.3m – capabilitati de lucru – SKYMAPPER Australia telescope • 1.35m with a 5.7 sq. degree FOV • To reside at Siding Spring Observatory • First light in Dec 2006 • To conduct a multi colour/epoch Stromlo Southern Sky Survey • Five year • Multicolor (6 filters) • Multi-epoch (6 exposures/each filter) • 2 steradians • Limiting magitude g~23 Costs: • Telescope: 2.0M US$ • Hardware: 7.0M US$ (instrumentation /Very Wide Field Camera + CCD Array) • Software: 1.5M US$ • Operations: 0.5M US$/yr.

  16. Why a SkyMapper? • There is no deep digital optical map of the southern sky • no instrument is planned that can map the entire southern sky in multiple colours and epochs • SkyMapper will provide an automated large-scale imaging capability that is matched to Australian: • Science strengths; • Instrumentation (AAOmega, Gemini etc.), and; • Conditions – poor seeing a benefit  cover the sky faster!

  17. The Stromlo Southern Sky Survey = S4 • Major component of SkyMapper telescope will be providing a survey of the southern sky • Multi-colour, multi-epoch of southerly 2 steradian • Star and Galaxy photometry (3% global accuracy) • Astrometry (better than 50 mas ) • Cadence: hours, days, months and years. • Five years to complete • Data supplied to the community without proprietary period as part of Virtual Observatory work • Complementary to SDSS but w. improvements!

  18. Survey Science The survey science goals are broad but some of the areas where I think SkyMapper stands to have largest impact are: • What is the distribution of large Solar-System objects beyond Neptune? • What is the history of the youngest stars in the Solar neighbourhood? • How far does the dark matter halo of our galaxy extend and what is its shape? • Gravity and metallicity for on order of 100 million stars  the assembly and chemical enrichment history of the bulge, thin/thick disk and halo? • Extremely metal poor stars. • Undiscovered members of the local group • accurate photometric calibration of galaxy redshift surveys: 2dF/6dF. • bright z>6 QSOs  probes of the ionization history of the Universe.

  19. SkyMapper Filter Set Ex-atmosphere

  20. Expected S4 limits

  21. z – coverage SDSS (EDR) Spectroscopic redshifts r’<18 for SDSS BJ<19.5 ( r’<18.5) for 2dFGRS Photometric redshifts SDSS to r’=20.5 From SDSS EDR Csabai 2003 2dFGRS S4 to provide: Spirals to z~0.3-0.4 E0 to z~0.7

  22. S4 Data Products • Deliverables to the Outside User: • Data (epoch, RA, DEC, mags, galaxy shape info,…) to be available through a web-served interface which provides catalogs over a user defined area • Images to be available through a web-served interface which provides images over a user defined area (maximum size will be limited) • How Much Data: • 1 Billion Objects observed 36 times • Database is • Database is ~2 Terabytes (1 billion rows x 500 columns) • 6 epochs x 6 colours x 4000 268,000,000 pixel images 150 Terabytes + 25 Terabytes of calibration images

  23. Telescop 1.3m – capabilitati de lucru –stele variabile, populatii stelare, astronomie extragalactica, LSS Binara stransa, 44i Boo Populatii stelare din Zona centrala a Galaxiei Nucleul Galaxiei rezolvata optic (RTC) bulge+discul Galaxiei (~108 stele, 2MASS/Chile) (~106 stele, 2MASS/Chile) (~1010 stele, 2MASS) Structura locala de super-roiuri de galaxii Structura filamentara la mare scara Supernova in M66 (RTC) (2MASS) a Universului (|d|< 300 Mpc, 2MASS)

  24. Telescop 1.3m – capabilitati de lucru - cosmologie Magellanic Clouds Gamma Ray Burst (z~5, RTC) ‘Volumul de Univers’ accesibil din punct de vedere cosmologic pentru un telescop de 1.3m

  25. NOI: TELESCOP ROBOTIC INTELIGENT DE 1.3MDE CE? Posibil RAPTOR/THINKING • In 2002, the RAPid Telescopes for Optical Response (RAPTOR) project pushed the envelope of automated robotic astronomy by becoming the first fully autonomous closed–loop robotic telescope. • Now RAPTOR has been re-tuned to be the key hardware element of the Thinking Telescopes Technologies Project: The Thinking Telescope is a concept designed to enhance analysis and observation of huge sections of the night sky and to be able to extract useful information in a timely fashion.

  26. Prezentul ProiectTELESCOP DE 1.3M - TELEROM STANDATD European/ESO = Standard CE (ISO) = ASTELCO (Germania), 1.1M Euros (cu TVA)

  27. Prezentul ProiectTELESCOP DE 1.3M - TELEROM STANDATD European/ESO = Standard CE (ISO) Calitatea proiectului data de: • Gradul de modernitate (calitatea tehnologica telescop+instrumente) • robotic/closed loop (autocontrol/autonom), remote control (personal minimal de intretinere). • 2 focare Nasmyth • FOV ~0.5 deg • Fotometric (UBVRIzY/ubvb1b2v1zY, 3000-10000A), echelle spectrograf, • Standard CE (ISO): • calitate oglinda: indice Strehl >0.8, • calitate instrumentatie: instrumentatie doar de first light (!) • Camera CCD 4k x 4k • Rezolutie spectrala < 20.000 • Gradul de performanta (calitate observationala telescop+instrumente.+site) • calitati observationale sit ales: • Seeing (?) • Poluare luminoasa (rural sky Bortle, mag. vis. >7) • Semnal/zgomot semificativ: S/N >>1 (S>5) • Magnitudinea limita (100s,5, B) ~ 22 • Cer fotometric: (t) <0.02m. • Gradul de competitivitate (randament, grad de noutate + calitate stiintifica) • Randament • Un numar cat mai mare de nopti senine (?) • Numar maxim de obiecte (stele, galaxii) de observat la magnitudini 15-22, • In zone compacte de cer (Bulge-Centrul /Anticentrul Galaxiei, Poli galacticiS/N, Ecliptica), • Numar de obiecte observate comparabil cu alte telescoape de apertura asemanatoare (apertura 1.3m: OGLE, 2MASS) ~ 108-109.

  28. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1.3M - standard ESO/UE - GRAD DE NOUTATE + CALITATE STIINTIFICA • Program de lucru: • Fotometrie (UBVRIzY) (extensibil la very narrow field/50sq.sec./SONG or/and very large field/1.5sq.deg !) • Spectroscopie (echelle spectrograph): • Astrometrie: • Metode de lucru: • Telescop inteligent: • Monitorizare + studiu efectiv; • Follow up inteligent (close loop /autocontrol cu prioritati) • Directii de cercetare: Sistem Solar: • (|d|<1pc): Patrulare, supraveghere permanenta si alerta obiecte din Sistemul Solar (comete, asteroizi, NEO) Stele din Galaxie: • (|d|<2kpc): Studiul populatiilor stelare din Galaxie • bulge, anticentru, brate spirale; • singulare, multiple, roiuri • preMS, MS, HB, TOB, RGB, post-RGB, obiecte colapsate; • cautarea de sisteme exoplanetare (SONG/transite, microlensing); Astronomie extragalactica si Cosmologie: • (|d|<1Mpc): Investigarea populatiilor stelare din galaxiile apropiate din Grupul Local • (|d|<300Mpc): Studiul structurii la mare scara a Universului apropiat Filamente, voiduri, BAO, weak & strong lensing, SN; • (z<7): Studiul obiectelor active si exotice din Universul indepartat: SN, AGN, QSO, GRB.

  29. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1.3M- PROIECT ANCS, 6M lei - Costuri: lei % • Active corporale (telescop+instrumente) 4.950.000 82.50% • Active necorporale 19.680 0.32% • Servicii 257.500 4.29% • Achizitie teren 78.750 1.31% • Regie 24.985 0.41% • Cheltuieli de personal 129.210 2.15% • Publicitate 7.875 0.01% • Management proiect 530.000 8.83% • Factor de risc 425.000 7.08% • Deplasari105.000 1.75% • Audit 2.000 0.003% ----------------------------------------------------------------------------------------- Total 6.000.000 100.00% • telescop (+VAT) 82.5% (4.95M Lei ) (4.5 r.s.v.) • alte cheltuieli 17.5% (~1.00M Lei) • Factor de risc (fond de rulment) ~7.08% • Sit + sit development + active necorporale ~5.92% • Restul management (deplasari)+ manopera+regie+… ~4.50% Factor de risc + Sit + sit development + active necorporale 13.00% (~0.78M Lei) Sit + sit development 5.60% (~0.33M Lei)

  30. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1.3M- concluzie - • Program de lucru telescop: Telescop robotic/closed loop (cu feedback/autocontrol) + remote control + wide field (0.5deg) • telescop automat inteligent de tip multiplex,  timp de exploatare > 10ani. • FOV 0.5 sq.deg, mag. limita (100s,5,B)~22m, 7 filtre (UBVRIzY), 300 nopti/an, 10 ore/noapte, 10 ani utilizare: • 100s/fields/filter/noapte, 700s/(field*filter)/noapte, • x 50 nopti/an  1.4h/filter/50nopti/an, ~10h/50nopti/an  sumat: 7h/filter/(50nopti/an*5ani), ~50h/(50nopti/an*5ani) • 50 zone/noapte x 50nopti/an/zona  50x6 zone/an 300zone/an x acoperire FOV 0.4 sq.deg  120 sq.deg. Altii: OGLE/Polonia: OGLE II (BVI) (CCD) OGLE III (VI) (cu array CCD) (mag. lim. 14) (mag.lim. 18) Galactic Bulge 11 sq.deg 100 sq.deg (~50 milioane stele) LMC 5 sq.deg 50 sq.deg (~ 35 milioane stele) SMC 3 sq.deg 18 sq.deg (~ 6 milioane stele).

  31. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1.3M- LUCRARI IN SIT – telescoape 2MASS, OGLE

  32. Conclusions

  33. Alegerea sitului telescopului

  34. STANDARDE EUROPENE SIT = ‘OBSERVATOARE EUROPENE’ • STANDARD EUROPEAN (Telescop+Instr.+Site) • STANDARD SIT ESO (Chile) + ENO (Canare): [Lege: La Oficina Técnica para la Protección de la Calidad del Cielo (OTPC) fue creada en enero de 1992 por el IAC para facilitar la aplicación de la Ley del Cielo (Ley 31/1988,artículo 3.1 de la ITC-EA-04 del RD1890/2008)] • Standardele lor de sit = Meteo + Seeing + Poluare NOI, in Proiect, avem de studiat: • 1 sit Chile; • 1 sit Canare; • 3 situri din tara.

  35. STANDARD ESO SITE Situl va fi ales METEO functie de: • Cer cat mai intunecat posibil in timpul noptii (poluare luminoasa  0, cer cel putin de tip ‘Rural Sky’pe scara Bortle, avand o magnitudini limita cu ochiul liber > 7.0); • Acoperire minima cu nori in timpul noptii (>180 nopti/an si avand standard fotometric ridicat); • Turbulenta optica scazuta in cursul noptii (seeing natural bun - cat mai mic posibil, <1-1.5arcsec) • Altitudine cat mai ridicata a locului de amplasare (de preferinta desupra stratului de inversiune atmosferica, altitudine, >2000-2200m). • Cantitate cat mai mica de vapori de apa (regim de umiditate de functionare a telescopului [5%;95%], si pentru asigurarea observatiilor optime in regim IR, zone aride); • Variatii mici ale umiditatii in timpul noptii; • Temperatura medie anuala moderata in timpul noptii (regim de temperature de functionare a telescopului [-20C:+35C]); • Variatii mici de temperature in timpul noptii; • Presiune atmosferica ridicata in timpul noptii (cer senin noaptea); • Viteza scazuta a vantului in timpul noptii (<12m/s); • Poluare scazuta de praf (timp de viata al stratului protector al oglinzii > 1an); • Nivel scazut de radiatii electromagnetice noaptea (sa nu existe inteferente cu sistemul remote control + robotic al telescopului) ; • Seismicitate scazuta (pentru protejarea telescopului in montura sa si de pastrare a directiei sale principale de orientare - meridianul locului). • Accesibilitate buna in sit (drum practicabil si suficient de larg pentru transportul in bune conditii a oglinzii principale a telescopului de 1.3m); • Existenta facilitatilor de curent electric (pentru antrenarea mecanica a miscarilor Alt/Az/Rot ale telescopului) si Internet (pentru asigurarea regimului de lucru robotic+remote control al telescopului), apa si de securitate/paza aferente cladirilor din situl telescopului.

  36. STANDARD ESO SITE Componente seeing: • Seeing atmosferic; • Seeing sit (cladiri adiacente); • Turbulenta sol; • Seeing local • Seeing dom; • Seeing optical tube telescope. Componente poluare: • Contaminare luminoasa; • Contaminare atmosferica; • Contaminare radioelectrica; • Rute aeriene.

  37. STANDARD ESO SITEPoluare luminoasa

  38. STANDARD ESO SITE 1. Site Quality ESO (Cerro Armazones, Chile) Observing conditions at the observatory: • Weather - ~ 90% of nights are clear (~330). • Seeing - median seeing at the WHT is 0.62 arcsec • Posibil amplasament E-ELT (42m) ?  San Pedro de Atacama (aceleasi conditii meteo,la 2400m).

  39. STANDARD ESO SITE

  40. STANDARD ESO SITE

  41. STANDARD ESO SITE

  42. STANDARD ESO SITE(Cerro Armazones)

  43. STANDARD ESO SITE Calea Lactee si telescopul Hexapod (Cerro Armazones, 3040m)

  44. Constelatia Orion, nebuloasa din Orion, si lumina zodiacala la orizont (San Pedro de Atacama,in zona bisercii, 2400m)

  45. STANDARD ESO SITE 2. Site Quality ESO (IAC, La Palma, Canary) The four sections below summarise information about observing conditions at the observatory: • Weather - ~ 75% of nights are clear (~270). • Seeing - median seeing at the WHT is 0.7 arcsec • Extinction - typically 0.12 mag in V, higher in summer • Sky brightness - 22.7, 21.9 and 21.0 mag/arcsec2 in B, V and R in the darkest conditions

  46. STANDARD ESO SITE 2. Instituto de Astrofísica (IAC) The Instituto de Astrofísica, the administrative and research center of IAC, is located in the town of San Cristóbal de La Laguna on the island of Tenerife. Observatorio del Roque de Los Muchachos The Observatorio del Roque de Los Muchachos is located in the Garafía municipality on the island of La Palma, at the edge of the Parque Nacional de la Caldera de Taburiente. The Observatory is at an altitude of 2,400 m. It was inaugurated in 1985, and is the largest concentration of telescopes in the northern hemisphere. [Observatorio del Teide The Observatorio del Teide is located in the Izaña region, on the island of Tenerife at an altitude of 2,400 m. It was founded in 1959 by the University of La Laguna. The two observatories, together with the Instituto de Astrofísica, constitute the European Northern Observatory. NOT telesclope (2.5m) – Roque de Los Muchachos, La Palma, 2400m

  47. STANDARD ESO SITE 2. The Sky of the Canary Islands • The Canary Islands are a preferred place for astronomical observation due to their climate and the transparency of the sky. Because of their high altitude (2400 m above sea level), the observatories are above the cloud bank and enjoy a clear atmosphere with little turbulence, both conditions favorable for sky observation. The favorable climate conditions allow astronomical research to be done throughout most of the year. Preserving the Sky • To maintain the preferred conditions for observation, the Law on the Protection of the Atmospheric Quality of the IAC Observatories was enacted in 1988. This law, which affects the islands of Tenerife and La Palma, identifies and attempts to prevent four distinct types of sky contamination: light pollution, radioelectric pollution, atmospheric contamination, and air traffic pollution near the observatories. To reduce these types of sky contamination, the act requires that: • Illumination is reduced after midnight. • Radio stations are regulated so as not to interfere with the observatories. • Industry or other activities that could contaminate the air are prohibited above 1500 m in altitude. • Air routes above La Palma and Tenerife are regulated. • The IAC established the Sky Quality Protection Technical Office to enforce these regulations.

  48. STANDARD ESO SITE 2. Members of the IAC • Belgium • Denmark • France • Germany • Italy • Norway • Spain • Sweden • United Kingdom Other Participating Countries • Armenia • Finland • Ireland • Netherlands • Poland • Portugal • Russia • Taiwan • Ukraine • United Stats

  49. Situri balcanice • Situri balcanice ‘nationale’: • Tubitak (Turcia) – 2500m, telescop 1.5m • Helmos (Grecia) - 2300m, telescop 2.3m • Rozhen (Bulgaria)- 1760m, telescop 2.0m

  50. SIT ROMANIA 3. – Transfagarasan 1800 – 2200m

More Related