370 likes | 1.31k Views
Networking in the Linux Kernel. Introduction. Overview of the Linux Networking implementation: Covered: Data path through the kernel Quality of Service features Hooks for extensions (netfilter, KIDS, protocol demux placement) VLAN Tag processing Virtual Interfaces Not covered:
E N D
Introduction Overview of the Linux Networking implementation: Covered: • Data path through the kernel • Quality of Service features • Hooks for extensions (netfilter, KIDS, protocol demux placement) • VLAN Tag processing • Virtual Interfaces Not covered: • Kernels prior to 2.4.20, or 2.6+ • Specific protocol implementations • Detailed analysis of existing protocols, such as TCP. This is covered only in enough detail to see how they link to higher/lower layers.
Application Application(Above socket)(HTTP, SSH, etc.) Presentation Session Transport TCP/UDP Network Internet (IP) Data Link Data Link(802.x, PPP, SLIP) Physical OSI Model The Linux kernel adheres closely to the OSI 7-layer networking model
OSI Model (Interplay) Layers generally interact in the same manner, no matter where placed Layer N+1 Data Add header and/or trailer Layer N+1Control Layer N+1 Data Pass to layer N as raw data Layer N Data
Socket Buffer When discussing the data path through the linux kernel, the data being passed is stored in sk_buff structures (socket buffer). • Packet Data • Management Information • The sk_buff is first created incomplete, then filled in during passage through the kernel, both for received packets and for sent packets. • Packet data is normally never copied. We just pass around pointers to the sk_buff and change structure members
Socket Buffer All sk_buff’s are members of a queue sk_buff next sk_buff prev list Packet Data cloned sk_buff’s share data, but not control head MAC Header data IP Header tail TCP Header end dev dev_rx sk data source device associated device socket struct sk_buff is defined in:include/linux/skbuff.h
Socket Buffer sk_buff features: • Reference counts for cloned buffers • Separate allocation pool and support • Functions for manipulating the data space • Very “feature-rich” – this is a very complex, detailed structure, encapsulating information from protocols at multiple layers There are also numerous support functions for queues of sk_buff’s.
… … … … Data Path Overview user socket socket kernel socket demux TCP UDP Layer 4 protocol demux protocol protocol IP Layer 3 protocol demux softirq net_rx_action() QueueDiscipline DMA rings Driver kernel NetworkDevice hardware
OSI Layers 1&2 – Data Link The code presented resides mostly in the following files: • include/linux/netdevice.h • net/core/skbuff.c • net/core/dev.c • net/dev/core.c • arch/i386/irq.c • drivers/net/net_init.c • net/sched/sch_generic.c • net/ethernet/eth.c (for layer 3 demux)
… … … … Data Link – Data Path IP net_rx_action() Layer 3 poll_queue softirq Layer 2 enqueue() dev->poll() netif_rx_schedule() Add device pointer to poll_queue netif_receive_skb() QueueDiscipline DMA Rings Driver net_interrupt(net_rx, net_tx, net_error) kernel DMA NetworkDevice hardware
Data Link – Features • NAPI • Old API would reach interrupt livelock under 60 MBps • New API ensures earliest possible drop under overload • Packet received at NIC • NIC copies to DMA ring (struct skbuff *rx_ring[]) • NIC raises interrupt via netif_rx_schedule() • Further interrupts are blocked • Clock-based softirq calls softirq_rx(), which calls dev->poll() • dev->poll() calls netif_receive_skb(), which does protocol demux (usually calling ip_rcv() ) • Backward compatibility for non-DMA interfaces maintained • All legacy devices use the same backlog (equivalent to DMA ring) • Backlog queue is treated just like all other modern devices • Per-CPU poll_list of devices to poll • Ensures no packet re-ordering necessary • No memory copies in kernel – packet stays in the sk_buff at the same memory location until passed to user space
Data Link – transmission • Transmission • Packet sent from IP layer to Queue Discipline • Any appropriate QoS in qdisc – discussed later • qdisc notifies network driver when it’s time to send – calls hard_start_xmit() • Place all ready sk_buff pointers in tx_ring • Notifies NIC that packets are ready to send • NIC signals (via interrupt) when packet(s) successfully transmitted. (Highly variable on when interrupt is sent!) • Interrupt handler queues transmitted packets for deallocation • At next softirq, all packets in completion_queue are deallocated
Data Link – VLAN Features • Still dependent on individual NICs • Not all NICs implement VLAN filtering • A partial list is available at need (not included here) • For non-VLAN NICs, linux filters in software and passes to the appropriate virtual interface for ingress priotization and layer 3 protocol demux • net/8021q/vlan_dev.c (and others in this directory) • Virtual interface passes through to real interface • No VID-based demux needed for received packets, as different VLANs are irrelevant to the IP layer. • Some changes in 2.6 – still need to research this
OSI Layer 3: Internet The code presented resides mostly in the following files: • net/ipv4/ip_input.c – process packet arrivals • net/ipv4/ip_output.c – process packet departures • net/ipv4/ip_forward.c – process packet traversal • net/ipv4/ip_fragment.c – IP packet fragmentation • net/ipv4/ip_options.c – IP options • net/ipv4/ipmr.c – IP multicast • net/ipv4/ipip.c – IP over IP, also good virtual interface example
Internet: Data Path Note: chart copied from DataTag’s“A Map of the Networking Code in the Linux Kernel”
Internet: Features Netfilter hooks in many places • INPUT, OUTPUT, FORWARD (iptables) • NF_IP_PRE_ROUTING – ip_rcv() • NF_IP_LOCAL_IN – ip_local_deliver() • NF_IP_FORWARD – ip_forward() • NF_IP_LOCAL_OUT – ip_build_and_send_pkt() • NF_IP_POST_ROUTING – ip_finish_output() • Connection tracking in IPv4, not in TCP/UDP/ICMP. • Used for NAT, which must maintain connection state in violation of OSI Layering • Can also gather statistics for networking usage, but all of this functionality comes from the netfilter module
Socket Structure and System Call Mapping The following files are useful: • include/linux/net.h • net/socket.c There are two significant data structures involved, the socket and the net_proto_family. Both involve arrays of function pointers to handle each system call type that is relevant.
System Call: socket • From user space, an application calls socket(family,type, protocol) • The kernel calls sys_socket(), which calls sock_create() • sock_create references net_families[family], an array of network protocol families, to find the corresponding protocol family, loading any modules necessary on the fly. • If the module is loaded, it is loaded as “net_pf_<num>”, where the protocol family number is used directly in the string. For TCP, the family is PF_INET (was: AF_INET), and the type is SOCK_STREAM • Note: linux has a hard limit of 32 protocol families. (These include PF_INET, PF_PACKET, PF_NETLNK, PF_INET6, etc.) • Layer 4 Protocols are registered in inet_add_protocol() (include/net/protocol.h), and socket interfaces are registered by inet_register_protosw(). Raw IP datagram sockets are registered like any other Layer 4 protocol. • Once the correct family is found, sock_create allocates an empty socket, obtains a mutex, and calls net_families[family]->create(). This is protocol-specific, and filles in the socket structure. The socket structure includes another function array, ops, which maps all system calls valid on file descriptors. • sys_socket() calls sock_map_fd() to map the new socket to a file descriptor, and returns it.
Other socket System Calls Subsequent socket system calls are passed to the appropriate function in socket->ops[]. These include (exhaustive list): Technically, Linux offers only one socket system call, sys_socket-call(), which multiplexes to all other system calls via the first parameter. This means that socket-based protocols could provide new and different system calls via a library and a mux, although this is never done in practice. • release • bind • connect • socketpair • accept • getname • poll • ioctl • listen • shutdown • setsockopt • getsockopt • sendmsg • recvmsg • mmap • sendpage
PF_PACKET A brief word on the PF_PACKET Protocol family PF_PACKET creates a socket bound directly to a network device. The call may specify a packet type. All packets sent to this socket are sent directly over the device, and all incoming packets of this type are delivered directly to the socket. No processing is done in the kernel. Thus, this interface can – and is – used to create user-space protocol implementations. (E.g., PPPoE uses this with packet type ETH_P_PPP_DISC)
Quality of Service Mechanisms Linux has two QoS mechanisms: • Traffic Control • Provides for multiple queues and priority schemes within those queues between the IP layer and the network device • Defaults are 100-packet queues with 3 priorities and a FIFO ordering. • KIDS (Karlsruhe Implementation architecture of Differentiated Services) • Designed to be component-extensible at runtime. • Consists of a set of components with similar interfaces that can be plugged together in almost arbitrarily complex constructions Neither mechanism implements the higher-level traffic agreements, such as Traffic Conditioning Agreements (TCA’s). MPLS is offered in Linux 2.6.
Traffic Control Traffic Control consists of three types of components: • Queue Disciplines • These implement the actual enqueue() and dequeue() • Also has child components • Filters • Filters classify traffic received at a Queue Discipine into Classes • Normally children of a Queuing Discipline • Classes • These hold the packets classified by Filters, and have associated queuing disciplines to determine the queuing order. • Normally children of a Filter and parents of Queuing Displines Components are connected into structures called “trees,” although technically they aren’t true trees because they allow upward (cyclical) links.
enqueue dequeue Queuing Discipline 1:0 . . . Filter Filter Default Class 1:1 Class 1:2 Queuing Discipline 3:0 Queuing Discipline 2:0 Traffic Control: Example This is a typical TC tree. The top-level Queuing Discipline is the only access point from the outside, the “outer queue.” From external access, this is a single queue structure. Internally, packets eceived at the outer queue are matched against each filter in order. The first match wins, with a final default case. Dequeue requests to the outer queue are passed along recursively to the inner queues to find a packet ready for sending.
Traffic Control (Cont’d) The TC architecture supports a number of pre-built filters, classes, and disciplines, found in net/sched/cls_* are filters, whereas sch_* are disciplines (classes collocated with disciplines). Some disciplines: • ATM • Class-Based Queuing • Clark-Shenker-Zhang • Differentiated Services mark • FIFO • RED • Hierarchical Fair Service Curve (SIGCOMM’97) • Hierarchical Token Bucket • Network Emulator (For protocol testing) • Priority (3 levels) • Generic RED • Stochastic Fairness Queuing • Token Bucket • Equalizer (for equalizing line rates of different links)
KIDS KIDS establishes 5 general component types (by interface) • Operative Components – receive a packet and runs an algorithm on it. The packet may be modified or simply examined. E.g., Token Buckets, RED, Shaper • Queue Components – Data structures used to enqueue/dequeue. Includes FIFO, “Earliest-Deadline-First” (EDF), etc. • Enqueuing Components – enqueue packets based on special methods: tail-enqueue, head-enqueue, EDF-enqueue, etc. • Dequeuing Components – dequeue based on special methods • Strategic Components – strategies for dequeue requests. E.g., WFQ, Round Robin
KIDS (Cont’d) • KIDS has 8 different hook points in the linux kernel, 5 at the IP layer and 3 at Layer 2: • IP_LOCAL_IN – just prior to delivery to Layer 4 • IP_LOCAL_OUT – just after leaving Layer 4 • IP_FORWARD – packet being forwarded (router) • IP_PRE_ROUTING – Packet newly arrived at IP layer from interface • IP_POST_ROUTING – Packet routed from IP to Layer 2 • L2_INPUT_<dev> – Packet has just arrived from interface • L2_ENQUEUE_<dev> – Packet is being queued at Layer 2 • L2_DEQUEUE_<dev> – Packet is being transmitted by Layer 2