1 / 19

Text-classification using Latent Dirichlet Allocation - intro graphical model

Text-classification using Latent Dirichlet Allocation - intro graphical model. Lei Li leili@cs. Outline. Introduction Unigram model and mixture Text classification using LDA Experiments Conclusion. …………………… the New York Stock Exchange …………………… America’s Nasdaq ……………………… Buy

Download Presentation

Text-classification using Latent Dirichlet Allocation - intro graphical model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Text-classification using Latent Dirichlet Allocation- intro graphical model Lei Li leili@cs

  2. Outline • Introduction • Unigram model and mixture • Text classification using LDA • Experiments • Conclusion

  3. …………………… the New York Stock Exchange …………………… America’s Nasdaq ……………………… Buy ……………………… …………………… bank debt loan interest billion buy ……………………… …………………… the New York Stock Exchange …………………… America’s Nasdaq ……………………… Buy ……………………… …………………… Iraq war weapon army Ak-47 bomb ……………………… Text Classification What class can you tell given a doc? military finance

  4. Why db guys care? • Could be adapted to model discrete random variables • Disk failures • user access pattern • Social network, tags • blog

  5. Document • “bag of words”: no order on words • d=(w1, w2, … wN) • wi one value in 1…V (1-of-V scheme) • V: vocabulary size

  6. Modeling Document • Unigram: simple multinomial dist • Mixture of unigram • LDA • Other: PLSA, bigram

  7. Unigram Model for Classification • Y is the class label, • d={w1, w2, … wN} • Use bayes rule: • How to model the document given class • ~ Multinomial distribution, estimated as word frequency Y N w

  8. Unigram: example d = bank * 100, debt * 110, interest * 130, war * 1, army * 0, weapon * 0 P(finance|d)=? P(military|d)=?

  9. Mixture of unigrams for classification • For each class, assume k topics • Each topic represents a multinomial distribution • Under each topic, each word is multinomial Y N z w

  10. Unigram: example d = bank * 100, debt * 110, interest * 130, war * 1, army * 0, weapon * 0 P(finance|d)=? P(military|d)=?

  11. Bayesian Network • Given a DAG • Nodes are random variables, or parameters • Arrow are conditional probability dependency • Given some prob on part nodes, there are algorithm to infer values for other nodes

  12. Latent Dirichlet Allocation • Model a θ as a Dirichlet distribution, on α • For n-th term wn: • Model n-th latent variable zn as a multinomial distribution according to θ. • Model wn as a multinomial distribution according to zn and β.

  13. Variational inference for LDA • Direct inference with LDA is HARD • Approximation with variational distribution • use factorized distribution on variational parameters γ and Φ to approximate posterior distribution of latent variables θand z.

  14. Experiment • Data set: Reuters-21578, 8681 training documents, 2966 test documents. • Classification task: “EARN” vs. “Non-EARN” • For each document, learn LDA features and classify with them (discriminative)

  15. Result most frequent words in each topic

  16. Classification Accuracy

  17. Comparison of Accuracy

  18. Take Away Message • LDA with few topics and few training data could produce relative better results • Bayesian network is useful to model multiple random variable, nice algorithm for it, • Potential use of LDA: • disk failure • database access pattern • user preference (collaborative filtering) • social network (tags)

  19. Reference • Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. Journal of machine Learning Research

More Related