1 / 18

CEEH ”kick-off”, januar 2007

CEEH ”kick-off”, januar 2007. Simulationsmodeller til vurdering af effekten af risikofaktorintervention. januar 2007 Henrik Brønnum-Hansen. Komponenter ved fremtidsscenarier for befolkningens helbredstilstand: Demografi (køn, alder, befolkningsprognose) Risikofaktorer

frieda
Download Presentation

CEEH ”kick-off”, januar 2007

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CEEH ”kick-off”, januar 2007 Simulationsmodeller til vurdering af effekten af risikofaktorintervention januar 2007Henrik Brønnum-Hansen

  2. Komponenter ved fremtidsscenarier for befolkningens helbredstilstand: • Demografi (køn, alder, befolkningsprognose) • Risikofaktorer • Sygdomsincidens og dødelighed • Behandlingseffekt • Ressourcer, økonomi • Div. tidsdimensioner • Aggregeringsniveau • Macro-niveau • Micro-niveau • Blandet • Problem  model

  3. Micro niveau Data for individuelle forløb Individ Eksponering - Risiko for eksponering (over periode og/eller alder) - Chance for ex-eksponering (over periode og/eller alder) eller ventetidsfordelinger herfor Incidens (årsagsspecifik) død eller sygdom for - ikke-eksponerede - eksponerede - ex-eksponerede Macro niveau Aggregerede data Befolkningstal opdelt på køn, alder (og evt. befolkningsgrupper, f.eks. socialt eller geografisk) Eksponering Prævalenstal for - ikke-eksponerede - eksponerede - ex-eksponerede (evt. flere tværsnitsopgørelser) Incidensrater (årsagsspecifik) død eller sygdom for hele befolkningen ellerbefolkningsgrupper

  4. Demografi er (også) vigtig

  5. PREVENT A model to estimate the health benefits of prevention developed by L.J. Gunning‑Schepers and Jan Barendregt • a tool for policy makers • uses currently available information on the relation between risk factors and mortality Some characteristics: • macro level model • trends in risk factor prevalence • one risk factor can be associated with more than one disease • one disease can be associated with more than one risk factor • gradual reduction in the risk for disease over time as exposure ceases • demography

  6. PREVENT simulering af “røgfri årgange”

  7. Lungecancer dødelighed

  8. KOL dødelighed

  9. Dødelighed af iskæmisk hjertesygdom

  10. Apopleksi dødelighed

  11. Test of the PREVENT model Macro versus micro simulation

  12. Data from micro-simulation to PREVENT Micro simulation model Output Population data Mortality data Exposure prevalence data Input PREVENT model

More Related