1 / 32

Splash Screen

Splash Screen. F ive-Minut e Check T hen/Now New Voc abulary Key Concept : Operations with Functions Exa mple 1: Operations with Functions Key Concept: Composition of Functions Example 2: Compose Two Functions Example 3 : Find a Composite Function with a Restricted Domain

frieda
Download Presentation

Splash Screen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Splash Screen

  2. Five-Minute Check Then/Now New Vocabulary Key Concept: Operations with Functions Example 1: Operations with Functions Key Concept: Composition of Functions Example 2: Compose Two Functions Example 3: Find a Composite Function with a Restricted Domain Example 4: Decompose a Composite Function Example 5: Real-World Example: Compose Real-World Functions Lesson Menu

  3. Use the graph of y = x2to describe the graph of the related function y = 0.5x2. A.The parent graph is translated up 0.5 units. B.The parent graph is compressed horizontally by a factor of 0.5. C.The parent graph is compressed vertically by a factor of 0.5. D.The parent graph is translated down 0.5 units. 5–Minute Check 1

  4. Use the graph of y = x2to describe the graph of the related function y = (x – 4)2– 3. A.The parent graph is translated left 3 units and up 4 units. B.The parent graph is translated right 3 units and down 4 units. C.The parent graph is translated left 4 units and down 3 units. D.The parent graph is translated right 4 units and down 3 units. 5–Minute Check 2

  5. A. B. C. D. 5–Minute Check 3

  6. Identify the parent function f(x) if and describe how the graphs of g(x) and f(x) are related. A.f(x) = x; g(x) is f(x) translated left 4 units. B.f(x) = |x|; g(x) is f(x) translated right 4 units. C.g(x) is f(x) translated right 4 units. D.g(x) is f(x) translated left 4 units. 5–Minute Check 4

  7. You evaluated functions. (Lesson 1-1) • Perform operations with functions. • Find compositions of functions. Then/Now

  8. composition Vocabulary

  9. Key Concept 1

  10. The domain of f and g are both so the domain of (f + g) is Answer: Operations with Functions A. Given f(x) = x2 – 2x, g(x) = 3x – 4, and h(x) = –2x2 + 1, find the function and domain for (f + g)(x). (f + g)(x) = f(x) + g(x) Definition of sum oftwo functions = (x2 – 2x) + (3x – 4) f(x) = x2 – 2x; g(x) = 3x – 4 = x2 + x – 4 Simplify. Example 1

  11. The domain of f and h are both so the domain of (f – h) is Answer: Operations with Functions B. Given f(x) = x2 – 2x, g(x) = 3x – 4, and h(x) = –2x2 + 1, find the function and domain for (f – h)(x). (f – h)(x) = f(x) – h(x) Definition of difference of two functions = (x2 – 2x) – (–2x2 + 1) f(x) = x2 – 2x; h(x) = –2x2 + 1 = 3x2 – 2x – 1 Simplify. Example 1

  12. The domain of f and g are both so the domain of (f ● g) is Answer: Operations with Functions C. Given f(x) = x2 – 2x, g(x) = 3x – 4, and h(x) = –2x2 + 1, find the function and domain for (f ● g)(x). (f ● g)(x) = f(x) ● g(x) Definition of product of two functions = (x2 – 2x)(3x – 4) f(x) = x2 – 2x; g(x) = 3x – 4 = 3x3 – 10x2 + 8x Simplify. Example 1

  13. D. Given f(x) = x2 – 2x, g(x) = 3x – 4, and h(x) = –2x2 + 1, find the function and domain for Operations with Functions Definition of quotient of two functions f(x) = x2 – 2x; h(x) = –2x2 + 1 Example 1

  14. The domains of h and f are both (–∞, ∞), but x = 0 or x = 2 yields a zero in the denominator of . So, the domain of (–∞, 0) È (0, 2) È (2, ∞). Answer: D = (–∞, 0) È (0, 2) È (2, ∞) Operations with Functions Example 1

  15. Find (f + g)(x), (f – g)(x), (f ● g)(x), and for f(x) = x2 + x, g(x) = x – 3. State the domain of each new function. Example 1

  16. A. B. C. D. Example 1

  17. Key Concept 2

  18. = 2(x2 + 6x + 9) – 1 Expand (x +3)2 = 2x2 + 12x + 17 Simplify. = f(x + 3) Replace g(x) with x + 3 = 2(x + 3)2 – 1 Substitute x + 3 for x in f(x). Compose Two Functions A. Given f(x) = 2x2 – 1 and g(x) = x + 3, find [f ○ g](x). Answer: [f ○ g](x) = 2x2 + 12x + 17 Example 2

  19. = (2x2 – 1) + 3 = 2x2 + 2 Substitute 2x2 – 1 for x in g(x). Simplify Compose Two Functions B. Given f(x) = 2x2 – 1 and g(x) = x + 3, find [g ○ f](x). Answer: [g ○ f](x) = 2x2 + 2 Example 2

  20. Compose Two Functions C. Given f(x) = 2x2 – 1 and g(x) = x + 3, find [f ○ g](2). Evaluate the expression you wrote in part A for x = 2. [f ○ g](2) = 2(2)2 + 12(2) + 17 Substitute 2 for x. = 49 Simplify. Answer: [f ○ g](2) = 49 Example 2

  21. Find for f(x) = 2x – 3 and g(x) = 4 + x2. A. 2x2 + 11; 4x2 – 12x + 13; 23 B. 2x2 + 11; 4x2 – 12x + 5; 23 C. 2x2 + 5; 4x2 – 12x + 5; 23 D. 2x2 + 5; 4x2 – 12x + 13; 23 Example 2

  22. A. Find . Find a Composite Function with a Restricted Domain Example 3

  23. To find , you must first be able to find g(x) = (x – 1)2, which can be done for all real numbers. Then you must be able to evaluate for each of these g(x)-values, which can only be done when g(x) > 1. Excluding from the domain those values for which 0 < (x – 1)2 <1, namely when 0 < x < 1, the domain of f ○ g is (–∞, 0] È [2, ∞). Now find [f ○ g](x). Find a Composite Function with a Restricted Domain Example 3

  24. Notice that is not defined for 0 < x < 2. Because the implied domain is the same as the domain determined by considering the domains of f and g, we can write the composition as for (–∞, 0] È [2, ∞). Find a Composite Function with a Restricted Domain Replace g(x) with (x – 1)2. Substitute (x – 1)2 for x in f(x). Simplify. Example 3

  25. Answer: for (–∞, 0] È [2, ∞). Find a Composite Function with a Restricted Domain Example 3

  26. B. Find f ○ g. Find a Composite Function with a Restricted Domain Example 3

  27. To find f ○ g, you must first be able to find , which can be done for all real numbers x such that x2 1. Then you must be able to evaluate for each of these g(x)-values, which can only be done when g(x)  0. Excluding from the domain those values for which 0 >x2 – 1, namely when –1 < x< 1, the domain of f ○ g is (–∞, –1) È (1, ∞). Now find [f ○ g](x). Find a Composite Function with a Restricted Domain Example 3

  28. Find a Composite Function with a Restricted Domain Example 3

  29. Answer: Find a Composite Function with a Restricted Domain Example 3

  30. Check Use a graphing calculator to check this result. Enter the function as . The graph appears to have asymptotes at x = –1 and x = 1. Use the TRACE feature to help determine that the domain of the composite function does not include any values in the interval [–1, 1]. Find a Composite Function with a Restricted Domain Example 3

  31. Find a Composite Function with a Restricted Domain Example 3

  32. Find f ○ g. A. D =(–∞, –1)  (–1, 1)  (1, ∞); B. D =[–1, 1]; C. D =(–∞, –1)  (–1, 1)  (1, ∞); D. D =(0, 1); Example 3

More Related