300 likes | 391 Views
s(t). r(t). {a(k)}. H tr (f). H ch (f). +. w(t). . r(t). {a(k)}. H (f). +. w(t). r(t). a(k). z(k). H (f). H * (f). +. kT. w(t). . a(k). G(z). z(k). +. n(k) ~N c (0, N 0 g(i-j)). r(t). z(k). u(k). a(k). H (f). H * (f). +. kT. w(t). . z(k). u(k). a(k). G(z).
E N D
s(t) r(t) {a(k)} Htr(f) Hch(f) + w(t) r(t) {a(k)} H(f) + w(t)
r(t) a(k) z(k) H(f) H*(f) + kT w(t) a(k) G(z) z(k) + n(k) ~Nc(0, N0g(i-j))
r(t) z(k) u(k) a(k) H(f) H*(f) + kT w(t) z(k) u(k) a(k) G(z) + n(k) ~Nc(0, N0g(i-j)) u0(k) a(k) F+(z) u(k) + w(k) ~Nc(0, (N0/A2)d(i-j))
z(k) u(k) a(k) G(z) + n(k) ~Nc(0, N0g(i-j)) a(k) F+(z) u(k) + w(k) ~Nc(0, (N0/A2)d(i-j))
a(k) a(k-1) a(k-L) ... z-1 z-1 z-1 x x f+(1) f+(L) S u0(k) w(k) + u(k)
S(k+1) Yst(.,.) a(k) S(k) z-1 w(k) Yout(.,.) + u(k) u0(k)
f-(k) f+(k) 1 1 x1 (x1)* (x2)* x2 x3 (x3)* x5 (x5)* 0 0 k k x4 (x4)*
state 1|2.5 (1, 1) 1|1.5 -1|0.5 (1, -1) -1|-0.5 1|0.5 (-1, 1) 1|-0.5 -1|-1.5 (-1, -1) -1|-2.5 k+1 k
state (1, 1) (1, -1) ... (-1, 1) (-1, -1) k k+1 k+2 k+3 k’ k’+1 k’+2 k’+3
(++) (+0) (+-) (0+) (00) (0-) (-+) (-0) (--) k k+1
20 22 14 (++) 4 6 15 (+0) 5 (+-) 7 6 8 10 (0+) 9 (00) 7 6 5 7 (0-) 2 6 6 (-+) 7 (-0) 14 (--) 13 15 k=3 k=4 k=5 k=0 k=1 k=2
4 16 (1,1) 4 0 0 (1,-1) 4 0 0 (-1,1) 16 4 (-1,-1) 16 36 k=0 k=1 k=2 k=3 k=4
16 4 36 (1,1) 4 16 4 0 (1,-1) 0 0 0 4 (-1,1) 4 0 (-1,-1) 16 4 16 k=0 k=1 k=2 k=3 k=4
16 5 1 (1,1) 9 1 4 0 9 (1,-1) 25 0 0 25 9 (-1,1) 25 49 (-1,-1) 4 81 49 k=0 k=1 k=2 k=3 k=4
16 5 13 16 (1,1) 0 4 4 0 9 25 (1,-1) 4 0 0 25 0 (-1,1) 5 16 4 (-1,-1) 49 41 36 k=0 k=1 k=2 k=3 k=4
z(k) u(k) r(t) symbol-by- symbol detector HLE(z) H*(f) kT
a(k) u0(k) u(k) GLE(z) + HLE(z) n(k) ~ Nc(0, N0g(i-j)) w(t)
a(k) u(k) + 1/G(z) n(k) ~ Nc(0, N0g(i-j))
a(k) e(k) GLE(z) -1 + HLE(z) n(k) ~ Nc(0, N0g(i-j))
a(k) u0(k) u(k) + n(k) ~ Nc(0, N0g(i-j))
z(k) u’(k) u(k) r(t) symbol-by- symbol detector HFF(z) H*(f) + kT - HFB(z)
a(k) u’(k) u(k) symbol-by- symbol detector G’DFE(z) + + - HFB(z) HFF(z) n(k) ~ Nc(0, N0g(i-j))
a(k) u(k) GDFE(z) + n’(k) HFF(z) n(k) ~ Nc(0, N0g(i-j))
u(k) a(k) + ~ Nc(0, (N0/A2)d(i-j)) n’(k)
e(k) a(k) GDFE(z) - 1 + n’(k) HFF(z) n(k) ~ Nc(0, N0g(i-j))
e’(k) e(k) a(k) G(z)H’FF(z) - 1 1 - HFB(z) + H’FF(z) n(k) ~ Nc(0, N0g(i-j))
a(k) u(k) + n’(k) n(k) ~ Nc(0, N0g(i-j))
r(t) u’(k) r(t) z(k) u’(k) HFF(z) H*(f) Hrec (f) kT kT Ns u’(k) u’(k) r(t) r(t) heq (n) HAA (f) HAA (f) Hrec (f) iTs kT
r(kNs+KFF1) r(kNs+1) r(kNs) r(kNs-KFF2) r(kNs-1) ... ... z-1/Ns z-1/Ns heq(1) heq(-KFF1) heq(-1) heq(0) heq(KFF2) x x x x x S u’(k) + u(k) S hFB(1) hFB(2) hFB(KFB-1) hFB(KFB) x x x x z-1 z-1 ...
r(kNs+KFF1) r(kNs+1) r(kNs) r(kNs-KFF2) r(kNs-1) ... ... z-1/Ns z-1/Ns heq(1;k) heq(-KFF1;k) heq(-1;k) heq(0;k) heq(KFF2;k) x x x x x S u’(k) + u(k) S hFB(1;k) hFB(2;k) hFB(KFB-1;k) hFB(KFB;k) x x x x z-1 z-1 ...