1 / 24

FOTION Aplicaciones Fotónicas con Iones

Explore the modification of materials with ions, ion-beam homogeneity, and optical waveguides. Swift heavy ions for photonics, creating nanostructures and novel optical waveguides. Detailed analysis at CMAM includes ion implantation and irradiation effects. Discover high-energy ion-induced amorphization and defect formation. Applications range from ion-matter interactions to nuclear damage. Advance your understanding of ion irradiation technology for optical waveguide fabrication.

fruiz
Download Presentation

FOTION Aplicaciones Fotónicas con Iones

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FOTION Aplicaciones Fotónicas con Iones José Olivares Villegas Instituto de Optica, CSIC jose.olivares@csic.es • Centro de Microanálisis de Materiales: CMAM, UAM • 5 MV tandem: • E = 5(Q + 1)  1- 50 MeV www.cmam.uam.es

  2. F 22 MeV 3 μm • Modification of the optical properties of materials with ions • Swift heavy ionsforPhotonicsapplications • Electronicdamagefornano- and micro-structuring • Nanostructures ( optics…) • Optical waveguides ions LiNbO3 Olivares et al. APL, 2005 Crespillo et al. NIMB 267, 2009

  3. Thermal Infrared camera: • In-situ surface temperature CCD colour camera: • For alignements and • Beam homogeneity with ionoluminescence Window at 45º to ion beam

  4. Accurate control beam homogeneity (CCD-camera) Precise control sample temperature (IR camera) Ion-luminescence

  5. Ion-matter interaction. Energy loss or stopping power, Se,n (keV/nm) LiNbO3 CMAM range Highenergy heavy ions (E  0.1MeV/amu)  HighelectronicExcitation  Highenergydensity  Damagetracks It is valid for thin films or at the surface • Nuclear • damage • Electronic excitation

  6. At CMAM (SRIM-2006) From ion implantation to ion irradiation • 5 MV tandem: E = 5(Q + 1)  1- 60 MeV • H, He… F, Si, …Cu, …Au Ion irradiation  Se > Threshold  Amorphous nano-tracks

  7. Substrate Ion implantation  Waveguides by optical barrier Standard model H, He MeV Optical barrier n: 1-10 % Guided mode Refactive Index 0 2 4 6 Depth (microns)

  8. At CMAM (SRIM-2006) Novel Optical Waveguides by Ion Track Technology High-energy heavy ions or swift heavy ions

  9. Ultrafast spike: thermal and excitation… T Tm • Se > Sth : Amorfización • Se < Sth : Defectos r (nm) I O N Se Sth Core Halo Ra z (μm)

  10. TEM: Microscopía electrónica de transmisión TEMimages of Cu 51 MeV irradiated LiNbO3 . (a)The light stripes indicate the unetched tracks induced by ion bombardment;insets show the diffraction patterns; (b) HRTEM image showing etched nanopore in cross sectional view.

  11. Tracks of huge aspect ratio 100x100 nm (2X2 mm)  5 nm / L1000 nm (= 0,1 / 20 mm)

  12. Novel Optical Waveguides by Ion Irradiation Se  Sn  cm-2 2e14 4 μm Air  Crystal 1e15 F 22 MeV  LiNbO3 Sub-threshold Optical microscopy polished edge Fluences ~ 1014 at/cm2 lower a factor >102 !! Appl. Phys. Lett, 2005

  13. RBS-channeling (H 3 MeV) Desorden estructural

  14. 1x1014 cm-2 3x1015 cm-2 Z X Y IONS LENS Micro-Raman spectroscopy (F. Agulló-Rueda, ICMM-CSIC) laser J. Olivares et al. J. Appl. Phys. (2007)

  15. Novel Optical Waveguides by Ion Irradiation • 1 0.1 dB/cm • Perfiles de indice “step-like”  Dispositivos no lineales con fluencias bajas, 1014 vs 1017at/cm2!!

  16. Random isolated impacts at the surface y Guided mode z x Cl 46 MeV Optical waveguides Swift heavy ion irradiation Single track regime Threshold ?: A. Meftah et al, NIMB 237 (2005) Nanoestructured medium

  17. Optical Waveguides  Swift Heavy Ion Irradiation Cl 46 MeV ( = 633 nm) • Fluencias ultrabajas: 1012 at/cm2 !!  Producción masiva

  18. Nano-hills Expansion of amorphous nanotrack (810 x 550) nm Nano-track Ion Irradiation: Nanohills  Nanopores Cu 50 MeV  LiNbO3 y, z x AFM image

  19. TEM: Microscopía electrónica de transmisión TEMimages of Cu 51 MeV irradiated LiNbO3 . (a)The light stripes indicate the unetched tracks induced by ion bombardment;insets show the diffraction patterns; (b) HRTEM image showing etched nanopore in cross sectional view.

  20. Topography Irradiation: Br 46 MeV, 1e8 cm-2,Etching: HF 40% , Liquid, 30 min, at 55 °C Irradiation: Br 46 MeV, 1e8 cm-2,Etching: HF 40% , Vapor, 1 min, at 25 °C Silica LiNbO3

  21. FOTION Aplicaciones Fotónicas con Iones jose.olivares@csic.es • Centro de Microanálisis de Materiales: CMAM, UAM • 5 MV tandem: • E = 5(Q + 1)  1- 50 MeV www.cmam.uam.es

  22. FOTION Aplicaciones Fotónicas con Iones… + láser! jose.olivares@csic.es www.cmam.uam.es Láser pulsado: ~ 100 fs 6 mJ/pulso x 1 kHz = 800, 400 y 266 nm

More Related