1 / 22

Electrical Engineering Committee: System Representations and Structure Examples

Learn about block diagram and signal flow graph representations, forms and structures of linear systems, and implementations in electrical engineering. Explore various examples and alternative forms.

fryel
Download Presentation

Electrical Engineering Committee: System Representations and Structure Examples

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Example • Block diagram representation of لجنة الهندسة الكهربائية

  2. Block Diagram Representation • LTI systems with rational system function can be represented as constant-coefficient difference equation • The implementation of difference equations requires delayed values of the • input • output • intermediate results • The requirement of delayed elements implies need for storage • We also need means of • addition • multiplication لجنة الهندسة الكهربائية

  3. Direct Form I • General form of difference equation • Alternative equivalent form لجنة الهندسة الكهربائية

  4. Direct Form I • Transfer function can be written as • Direct Form I Represents لجنة الهندسة الكهربائية

  5. Alternative Representation • Replace order of cascade LTI systems لجنة الهندسة الكهربائية

  6. Alternative Block Diagram • We can change the order of the cascade systems لجنة الهندسة الكهربائية

  7. Direct Form II • No need to store the same data twice in previous system • So we can collapse the delay elements into one chain • This is called Direct Form II or the Canonical Form • Theoretically no difference between Direct Form I and II • Implementation wise • Less memory in Direct II • Difference when using finite-precision arithmetic لجنة الهندسة الكهربائية

  8. Signal Flow Graph Representation • Similar to block diagram representation • Notational differences • A network of directed branches connected at nodes • Example representation of a difference equation لجنة الهندسة الكهربائية

  9. Example • Representation of Direct Form II with signal flow graphs لجنة الهندسة الكهربائية

  10. Determination of System Function from Flow Graph لجنة الهندسة الكهربائية

  11. Basic Structures for IIR Systems: Direct Form I لجنة الهندسة الكهربائية

  12. Basic Structures for IIR Systems: Direct Form II لجنة الهندسة الكهربائية

  13. Basic Structures for IIR Systems: Cascade Form • General form for cascade implementation • More practical form in 2nd order systems لجنة الهندسة الكهربائية

  14. Example • Cascade of Direct Form I subsections • Cascade of Direct Form II subsections لجنة الهندسة الكهربائية

  15. Basic Structures for IIR Systems: Parallel Form • Represent system function using partial fraction expansion • Or by pairing the real poles لجنة الهندسة الكهربائية

  16. Example • Partial Fraction Expansion • Combine poles to get لجنة الهندسة الكهربائية

  17. Transposed Forms • Linear signal flow graph property: • Transposing doesn’t change the input-output relation • Transposing: • Reverse directions of all branches • Interchange input and output nodes • Example: • Reverse directions of branches and interchange input and output لجنة الهندسة الكهربائية

  18. Example • Both have the same system function or difference equation Transpose لجنة الهندسة الكهربائية

  19. Basic Structures for FIR Systems: Direct Form • Special cases of IIR direct form structures • Transpose of direct form I gives direct form II • Both forms are equal for FIR systems • Tapped delay line لجنة الهندسة الكهربائية

  20. Basic Structures for FIR Systems: Cascade Form • Obtained by factoring the polynomial system function لجنة الهندسة الكهربائية

  21. Structures for Linear-Phase FIR Systems • Causal FIR system with generalized linear phase are symmetric: • Symmetry means we can half the number of multiplications • Example: For even M and type I or type III systems: لجنة الهندسة الكهربائية

  22. Structures for Linear-Phase FIR Systems • Structure for even M • Structure for odd M لجنة الهندسة الكهربائية

More Related