170 likes | 234 Views
Simplify radical expression using the Product Property of Square Roots. Simplify radical expression using the Quotient Property of Square Roots. radical expression. radicand rationalizing the denominator conjugate. Lesson 1 MI/Vocab. Key Concept 10-1a. = 2 ● Simplify.
E N D
Simplify radical expression using the Product Property of Square Roots. • Simplify radical expression using the Quotient Property of Square Roots. • radical expression • radicand • rationalizing the denominator • conjugate Lesson 1 MI/Vocab
= 2● Simplify. Simplify Square Roots Prime factorization of 52 Product Property of Square Roots Answer: Lesson 1 Ex1
A. B. C.15 D. • A • B • C • D Lesson 1 CYP1
= 22● Simplify. Answer: 4 Multiply Square Roots Product Property Product Property Lesson 1 Ex2
A. B. C. D.35 • A • B • C • D Lesson 1 CYP2
Answer: Simplify a Square Root with Variables Prime factorization Product Property Simplify. Lesson 1 Ex3
A. B. C. D. • A • B • C • D Lesson 1 CYP3
A. Answer:Simplify. Rationalizing the Denominator Product Property of Square Roots Lesson 1 Ex4
B. Rationalizing the Denominator Product Property of Square Roots Prime factorization Lesson 1 Ex4
Answer:Divide the numerator and denominator by 2. Rationalizing the Denominator Lesson 1 Ex4
A. A. B. C. D. • A • B • C • D Lesson 1 CYP4
B. A. B. C. D. • A • B • C • D Lesson 1 CYP4
Answer:Simplify. Use Conjugates to Rationalize a Denominator (a – b)(a + b) = a2 – b2 Lesson 1 Ex5
A. B. C. D. • A • B • C • D Lesson 1 CYP5