1 / 26

Supporting Research on Climate Friendly Transport Coordination Action – 233984

Supporting Research on Climate Friendly Transport Coordination Action – 233984 REACT project is partially funded by the European Commission. REACT. Setting up of a European strategic research agenda on climate-friendly transport

fuller
Download Presentation

Supporting Research on Climate Friendly Transport Coordination Action – 233984

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Supporting Research on Climate Friendly Transport Coordination Action – 233984 REACT project is partially funded by the European Commission REACT Setting up of a European strategic research agenda on climate-friendly transport Chiara Bresciani, Alberto Colorni,Federico Lia, Alessandro Luè DEMOCRITOSFINALCONFERENCE Genoa, September 23rd 2011

  2. The REACT project • Co-financed by the 7thFramework Programme • August 2009-July 2011 • Scheme: Coordination and Support Action

  3. REACT Objectives • To articulate a long-tem vision and a Strategic Research Agenda on climate-friendly transport • To identify national and regional initiatives and research programs on climate friendly transport and mobility, enhancing the coordination of funded research initiatives among EC and national agencies. • To develop a set of indicators for the carbon impact of transport research • To share experiences among research program managers in the Member States, Associated States and EC, so as to create synergies and enhance collaboration.

  4. REACT Strategic Research Agenda SRA: a strategic tool to define research priorities for the next 20 years towards a climate–friendly vision for the transport sector A hierarchical structure: the example of ERTRAC strategic objectives for the transports sectors technology or policy-based objectives research areas and specific research areas current specific studies for each research area Example

  5. A preliminary analysis • Analysis of • SRAs elaborated by the European Technology Platforms • ACARE, for the aeronautics sector • ERRAC, for the rail sector • ERTRAC, for the road transport sector • WATERBORNE, for the maritime sector • new White Paper on transport and other EC reports • present FP7 calls • academic literature review • The analysis allowed to • collect suggestions on the REACT SRA elaboration process • gather a first set of promising research areas • define a first set of evaluation criteria

  6. Elaboration of the REACT SRA Through a consultation process that involves stakeholders coming from the academic world, industry and policy • Expert consultation • Open consultation • Interviews to key experts • Identification of • the structure of the SRA (research areas to be considered) • the criteria (how to evaluate the priorities) • Assessment of the criteria • Comments on the outcome for research areas and priorities

  7. Expert consultation Consultation carried out with a Delphi method, organized into rounds.Every round the same action flow: submitting questions, analyzing and providing results to participants. • Consultation conducted • face-to-face: workshops and interviews • online: web questionnaire • Workshops with experts, stakeholders, local policy makers and academics. • June 2010 in Rijeka • February 2011 in Milan • Final conference • May 2011 in Belgrade

  8. SRA structure (1) • The research areas were divided in two main Pillars • Engineering and ICT • Planning, Social Sciences and Economy

  9. SRA structure (2) Each Pillar includes Sectorsof research

  10. SRA structure (3) An example • Each sector provides different research approaches; • for each research approach, some mainresearch areas are included; • for each main research area, one or more specific research areas are listed.

  11. SRA: the criteria • Research demandThe timeframe of the research stages (basic, applied, and implementation). It considers as threshold the year 2030. • GHG emissions reduction, divided into two indicators: • Contribution to reduce GHG emissions • Cost-efficiency: amount of GHG savings per financial unit • FeasibilitySocial and/or political obstacles (e.g. is it hardly behavioral acceptable or politically inconvenient?) to the development of the research area • Other effectsOther effects that the research in a specific field would bring together with its development, like, for example, social equity or job creation. The experts assessments on the criteria on each specific research area have been used to set the priorities of the SRA.

  12. SRA: an example Priority and criteria Score assignedtooverallpriority (black) and impact on GHG reduction (green) Mainresearch area low high Timeframeofresearchdemand: basicresearch (yellow), appliedresearch (orange) and implementation (red) Specificresearch area 2010 2020 2030 12

  13. SRA: priorities & timeframe AERONAUTICS One of the overall top priority research area is about aerodynamics and materials In the next years management systems will introduce new concepts for more efficient flight routes and phases GHG reduction will also depend on breakthrough technologies and unconventional configurations 13

  14. SRA: priorities & timeframe RAIL ICT (A18), that has the highest overall priority, is entering the applied research phase and it will be full operating by 2020 The highest potential for reducing GHG emissions is attributed to the reduction of weight and aerodynamics andto the braking energy recovering systems 14

  15. SRA: priorities & timeframe ROAD Research on non conventional hybrid systems (A32), full electrical vehicles (A33) and fuel cell technology (A38) is considered very important. Basic research is mostly needed by research on hybrids and fuel cells. 15

  16. SRA: priorities & timeframe WATER The highest overall priority research areas are Port operations (A51), Alternative propulsion systems (A48), Innovative and hydrodynamic vessel concepts (A49). The basic research requires very short time (1-2 years) for all the specific research areas, except “Innovative and hydrodynamic vessel concepts” (3 years). 16

  17. SRA: priorities & timeframe PLANNING AND SYSTEMS “…the importance of this area is also based on the long lifetime of spatial planning and transport infrastructures.” The highest overall priorities were given to the research areas of Non-Motorised Mobility Planning (A59), followed by Integration of Spatial, Urban and Transport Planning (A55), Optimisation of Logistics (A64), and Public Transport Planning (A60). 17

  18. SRA: priorities & timeframe SOCIAL AND BEHAVIOURAL MEASURES Priorities within the behavioural/social domain include: shifting from products to services (i.e., car/bike-sharing, A65), workplace/school travel planning (A72), eco-driving (A73) and education (A71) All areas were considered to reach the implementation stage in the next few years. 18

  19. SRA: priorities & timeframe INDUSTRY AND ECONOMY The highest priority area is European regulation on emission performance standards “there is a need for studies on the specific effects of the different types of measures and policy instruments, which can inform decision makers about the most effective regulation.” 19

  20. Conclusions (1) • Experts and Stakeholders involved into the process stressed the importance of a SRA for climate friendly transport as a reference point for the research community and Europe. • Non-technological research comes out as a fundamental and not collateral, to be adequately fostered. Some remarks have been stressed by interviewees: • the major part of today’s research funding is allocated to technology-related research; • many effective ways of saving CO2 in the transport sector, e.g. in the fields of policy and economical measures, are underestimated.

  21. Conclusions (2) • The objective of collecting and classifying all the research areas linked to climate-friendly transports was ambitious: many approaches could have been followed. • The top–down hierarchical classification of research areas does not highlighteasily the cross–cutting themes that interest more research areas at the same level. • In the ICT and Engineering, cross cutting themes emerge: • research on design (aerodynamics and fluid dynamics) and materials (composite, recycled, light weighted); • electric propulsion and on-board energy generation; • traffic management and ICT applied to vehicle – infrastructure, vehicle – driver and vehicle – vehicle.

  22. Conclusions (3) • For further information • Alessandro Luè • Poliedra – Politecnicodi Milano • Via G. Colombo 40 • +39 02 2399 2905 • lue@poliedra.polimi.it • www.react-transport.eu

  23. Assessment of the criteria (1) Experts were asked to assess the criteria with a webquestionnaire. Experts could decide the research areas to assess, based on their expertise. 24

  24. Assessment of the criteria (2) • The experts assessment of each specific research area have been used to set the priorities of the SRA. • Two multicriteria analysis methodologies have been applied: • Analytic Hierarchy Process (AHP)Decomposition of the decision problem into a hierarchy of more easily comprehended sub-problems, each of which can be analyzed independently • Technique For Order preference BY Similarity to Ideal Situation (TOPSIS)Calculation of the Euclidean distances between each specific research area and the ideal one (with the best scores in every criterion)

  25. Assessment of the criteria (3)

More Related