1 / 37

Heavy multiquark systems from heavy ion collisions

Heavy multiquark systems from heavy ion collisions. Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark States and Sum Rules 3. Few words on New Predictions and Future Search. Recent Highlights in Hadron Physics – Heavy quark sector.

fynn
Download Presentation

Heavy multiquark systems from heavy ion collisions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heavy multiquark systems from heavy ion collisions Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark States and Sum Rules 3. Few words on New Predictions and Future Search

  2. Recent Highlights in Hadron Physics – Heavy quark sector Babar: DSJ(2317) 0+ Puzzle in Constituent Quark Model(2400) • DK threshold effect • Chiral partner of (0- 1-) • Tetraquark molecule ? X(3872), Y(4260), Z(4430) y’p Z(4051),Z(4248) cc1p Must contain cc ? Z(4248) ? Tetraquark ?

  3. Previous Work on Multiquark hadrons - Light quark sector Scalar tetraquark (Jaffe 76) p1(1400) Candidate for Search for Q+ pentaquark Search for H dibaryon

  4. Light Multiquark states and diquarks

  5. Tetraquarks: Jaffe • color spin interaction: light scalar nonet q1 q3 q2 q4 • Diquark configurations • Scalar nonet |9,0+> • Diquark basis • Q-antiQ basis

  6. p1(1400) E852 + Chung et al. • p-wave decay of p1(1400) into h p • quark content of 10+10 • Can not be obtained from QQ • Can be obtained from (QQ)(QQ): such as (3X6) + (3X6) Needs further experimental work

  7. Recently observed heavy Multiquark states (qqcc) F.Navara, M. Nielsen, SHL: PLB 649, 166 (07) SHL, M. Nielsen et al: PLB 661, 28 (08) SHL, K.Morita, M.Nielsen: PRD 78, 076001 (08), NPA 815,29 (09) SHL, M.Nielsen, U. Wiedner: JKPS 55,424(09)

  8. c c Recently observed states at B-Factory Through B decay s W- c b Through ISR process e Belle: PRL 98, 082001 (07) e+ e-  J/y + X(3904)  D D* c e+

  9. Newly observed states

  10. Newly observed states

  11. QCD sum rule results • sum rule Large M2 Small M2 M2 • In principle QCD can not distinguish between diquark configuration and molecular configuration • but if the overlap is large, plateau and OPE convergence, pole dominance

  12. QCD sum rules X(3872): SHL, K. Morita, M. Nielsen (PRD08) • J=[s][V] Tetraquark current vs. J=DD* Molecular current Small width <2 MeV

  13. Cont- Z(4430) : SHL, K. Morita, M. Nielsen (PRD08) • J=D1 D* Molecular current width = 40 MeV

  14. Cont- Z2(4250) : SHL, K. Morita, M. Nielsen (PRD08) • J=D1 D Molecular current • But J=D* D* Molecular current gives Mass>4.2 in sum rule ?

  15. Why not Tetraquarks • color spin interaction: q1 q3 q1 q3 q2 q4 H H H q1 q2 H

  16. Some predictions on Heavy and Explicitly exotic Heavy Multiquark states (qqcc) SHL, S. Yasui : EPJC 64 283 (09) SHL, S. Yasui, W. Liu, CM.Ko : EPJC 54 259 (08)

  17. Multiquark configuration: Mulders, Aerts, de Swart PRD80 • color spin interaction: light scalar nonet u d u d u u d u s u u d u s u d u s u s

  18. Diquark inside Baryons Example u d d u s s

  19. Works very well with 3x CB = CM =635 mu2 d u u d x 3= quark antiquark in Meson p r d u d u

  20. Stable Multiquark configurations in a schematic diquark model

  21. Multiquark configuration: Multers, Aerts, de Swart PRD80 • Diquark attracation vs quark-antiquark q1 q3 q2 • diquark picture: Yasui, Lee,.. (EJP08,EJP09)

  22. Tetra-quark - configurations Binding against decay = (Mass of 2 Mesons) – (Mass of Tetraquark) 0+  0- 0- d u d d u u u d 0+  0- 0- c u d c b u b d

  23. Tetra-quark – hadronic weak decay modes  0- 1- 1+ c u d c c u c d

  24. c c Previous works on Tcc Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M.Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) in press Canlook for 1+ (Tcc) Belle: PRL 98, 082001 (07) e+ e-  J/y + X(3904)  D D* e Tcc (3800) c c e+ SHL, S Yasui, W Liu, C Ko (08)

  25. Pentaquarks (states with two diquarks ) D QQs L u d u s  Q u d u 1/2- s Q

  26. Di-bayron – general considerations di-baryon B B 1 2 3 4 Conf-1 1 2 3 4  0+ 5 6 5 6 B B 1 2 6 4 Conf-2 3 5

  27. 2SC like state CFL like state Di-bayron (Conf 1) – (qq) (qq) (qq) H di-baryon u d u d u d u s  0+ s s d s H di-baryon could be bound • unfortunately not found in elementary processes

  28. Di-baryon (Conf 2) – (qq) (qq) (qQ) Hc di-baryon P Xc 0+ s u d u  u d u s u c u c Hc di-baryon new prediction • could be found in heavy ion collision

  29. Some prediction for Heavy Ion • Large number of c and b quark produced • Vertex detector • High density matter: favors multiquark production • Example: FAIR 104 / Month D0k-p+ SHL, K. Ohnishi, Yasui, In-Kwon Yoo, C.M.Ko: PRL 100, 222301(08) SHL, S. Yasui, W.Liu, C.M.Ko: EPJ C54, 259 (08)

  30. Success of Coalescence model Coalescence model = Statistical model + overlap Suppression of p-wave resonance (Muller and KadanaEn’yo) PT dependence of ratio Quark number scaling of v2 v4 Ko et al Ko et al Ko et al

  31. Multiquark production in a simple coalescence model

  32. Production ratios for predicted Multiquarks • Qc production at RHIC and LHC Qc/D > 0.74 x 10 -4 Qc/Ds> 0.23 x 10 -3 • Hc production at RHIC and LHC Hc/D > 0.8 x 10 -4 Hc/Ds> 0.25 x 10 -3 • Tcc production Tcc/D > 0.34 x 10 -4 RHIC > 0.8 x 10 -4 LHC

  33. Summary • QCD sum rule analysis suggests that recently measured X,Y,Z most likely exotic states • Diquarks are unique features of QCD, Mutltiquark states will exits in Heavy sector, due to diquark structure Tcc (ud cc) Qcs (udusc), Hc(udusuc)… • RHIC, LHC can be a very useful heavy exotic factory  If found, it will be the first exotic ever,  will tell us about QCD, q-q interaction and dense matter  great step forward in QCD • If diquarks exists near Tc, additional production of Tcc and Qcs. Lc/D enhancement can be a signature of sQGP •  LHC plans to measure Lc and D, But all can be measured at KEK and J-PARK 4. Multiquark states are doorway to dense QCD.

  34. Back ups

  35. u u d d Hadronization through coalescence : Lc / D ratio Lc production through 3-body coalescence u c u d D meson production through 2-body coalescence u u d c u s c d c u s u c d c s u d c d u c c d c u Lc production through 2-body coalescence D meson production through 2-body coalescence of diquark and c  suppressed d s

  36. diquark – anti-diquark (Tetra-quark) - II Z(4248) ? L=1 L=1 0- 0-  1- c u d u c d c c

  37. Pentaquark – general considerations L=1 Q+ P K u d u d  s u d d 1/2+ u s L2 contribution • - 500 MeV in Full quark model by Hiyama, Hosaka et al Q+ 1540 can not be a pentaquark state, if it exists ?

More Related