340 likes | 952 Views
E. D. A. C. B. 24.3.1 正多边形和圆. 观察下列图形他们有什么特点?. 四条边相等,四个角相等( 90 0 )。. 三条边相等,三个角相等( 60 度)。. 正方形. 正三角形. 一 . 正多边形定义. 各边相等 , 各角也相等的多边形叫做 正多边形. 如果一个正多边形有 n 条边,那么这个正多边形叫做 正 n 边形 。. 思考 : 菱形是正多边形吗 ? 矩形是正多边形呢 ?. 菱形 , 矩形都不是正多边形. 正 n 边形与圆的关系. 1. 把正 n 边形的边数无限增多 , 就接近于圆. 2. 怎样由圆得到多边形呢?. D.
E N D
E D A C B 24.3.1正多边形和圆
四条边相等,四个角相等(900)。 三条边相等,三个角相等(60度)。 正方形 正三角形 一 .正多边形定义 各边相等,各角也相等的多边形叫做 正多边形. 如果一个正多边形有n条边,那么这个正多边形叫做正n边形。 思考: 菱形是正多边形吗?矩形是正多边形呢? 菱形, 矩形都不是正多边形
正n边形与圆的关系 1.把正n边形的边数无限增多,就接近于圆. 2.怎样由圆得到多边形呢? D A 思考1: 把一个圆4等分, 并依次连 接这些点,得到正多边形吗?? B C 弦相等(多边形的边相等) 弧相等 圆周角相等(多边形的角相等) —这样的多边形是正多边形
思考2: 把一个圆5等分, 并依次连接这些点, 得到正多边形吗?? A ⌒ ⌒ ⌒ ⌒ ⌒ 证明:∵AB=BC=CD=DE=EA B E ∴AB=BC=CD=DE=EA ⌒ D C ∵BCE=CDA=3AB ∴∠A=∠B 同理∠B=∠C=∠D=∠E 定理1:把圆分成n(n≥3)等份: 依次连结各分点所得的多边形是这个圆 的内接正多边形. ∴∠A=∠B=∠C=∠D=∠E 又∵顶点A、B、C、D、E都在⊙O上 ∴五边形ABCDE是⊙O的 内接正五边形.
证明:连结OA、OB、OC,则: ∠OAB=∠OBA=∠OBC=∠OCB ∵TP、PQ、QR分别是以A、B、C 为切点的⊙O的切线 ∴∠OAP=∠OBP=∠OBQ=∠OCQ ∴∠PAB=∠PBA=∠QBC=∠QCB 又∵AB=BC ∴AB=BC ∴△PAB与△QBC是全等 的等腰三角形。 ∴∠P=∠Q PQ=2PA 同理∠Q=∠R=∠S=∠T QR=RS=ST=TP=2PA ⌒ ⌒ 思考3: 过圆的5等份点画圆的切线, 则以相邻切线的交点为顶点的多边形是正多边形吗?? A T P E B O Q S C D R 定理2:经过各分点作圆的切线,以相邻切 线的交点为顶点的多边形是这个圆的 外切正多边形. 又∵五边形PQRST的各边都与⊙O相切, ∴五边形PQRST的是O外切正五边形。
E D F C 二. 正多边形有关的概念 正多边形的中心: 一个正多边形的 外接圆的圆心. 半径R . O 中心角 正多边形的半径: 外接圆的半径 边心距r 正多边形的中心角: 正多边形的每一条 边所对的圆心角. 正多边形的边心距: 中心到正多边形的 一边的距离.
外接 1. O是正△ABC的中心,它是△ABC的_____ 圆与________圆的圆心。 内切 A 2. OB叫正△ABC的_____, 它是正△ABC的______圆 的半径。 半径 外接 .O 边心距 3. OD叫作正△ABC______, 它是正△ABC的______ 圆的半径。 内切 B C D 中心 4. ∠BOC是正△ABC的________角; 60 120 ∠BOC=_____度; ∠BOD=_____度.
5、正方形ABCD的外接圆圆心O叫做 正方形ABCD的____________ 中心 6、正方形ABCD的内切圆的半径OE叫做 正方形ABCD的___________ 边心距 A D .O B E C
7、⊙O是正五边形ABCDE的外接圆,弦AB的 弦心距OF叫正五边形ABCDE的________, 它是正五边形ABCDE的________圆的半径。 边心距 内切 中心 8、∠AOB叫做正五边形ABCDE的_______角, 它的度数是________ 72度 D C E .O A B F
9、图中正六边形ABCDEF的中心角是_______; 它的度数是_________; ∠AOB 60度 10、你发现正六边形ABCDEF的半径与边长具有 什么数量关系?为什么? E D F .O C A B
1、判断题。 ①各边都相等的多边形是正多边形。 ( ) ②一个圆有且只有一个内接正多边形 ( ) 2、证明题。 求证:顺次连结正六边形 各边中点所得的多 边形是正六边形。 × × A F B E C D
3.求证:正五边形的对角线相等。 A 已知:ABCDE是正五边形,求证:DB=CE B E 证明: 在△BCD和△CDE中 ∵BC=CD ∠BCD=∠CDE CD=DE ∴△BCD≌△CDE ∴BD=CE 同理可证对角线相等。 D C
E D F . C 中心角 边心距把△AOB分成 2个全等的直角三角形 O . R a A G B 设正多边形的边长为a,半径为R,则周长为: L=na 如何求正多边形的面积呢?先求什么?再求什么?
正n边形的一个内角的度数是____________; 中心角是___________; 正多边形的中心角与外角的大小关系是________. 相等
完成下表中正多边形的计算 等边三角形的半径与边长、边心距的比值是_____ 正方形的半径与边长、边心距的比值是_____ 正六边形的半径与边长、边心距的比值是_____
3.分别求出半径为R的圆内接正三角形,正方形的边长,边心距和面积.3.分别求出半径为R的圆内接正三角形,正方形的边长,边心距和面积. 解:作等边△ABC的BC边上的高AD,垂足为D 连接OB,则OB=R A 在Rt△OBD中 ∠OBD=30°, · 边心距=OD= O 在Rt△ABD中 ∠BAD=30°, B C D
解:连接OB,OC作OE⊥BC垂足为E, ∠OEB=90° ∠OBE= ∠ BOE=45° 在Rt△OBE中为等腰直角三角形 A D · O C B E
解:如图所示,由于ABCDEF是正六边形,所以它的中心角等于 =60°,△OBC是等边三角形,从而正六边形的边长等于它的半径. 已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积. 分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的. 在Rt△OAM中,OA=a,AM=½AB= ½a OM= ∴所求正六边形的面积=
A D · · O O D C B C B E D B C F E O A R r P A 你能由这三个特殊的正多边形推出一般的正多边形的面积公式吗?计算步骤呢?
解: 如图由于ABCDEF是正六边形,所以它的中心角等于 ,△OBC是等边三角形,从而正六边形的边长等于它的半径. 在Rt△OPC中,OC=4, PC= 例 有一个亭子,它的地基半径为4m的正六边形,求地基的周长和面积(精确到0.1m2). 因此,亭子地基的周长 l =4×6=24(m). 利用勾股定理,可得边心距 F E O 亭子地基的面积 A D R r P B C
小结: 1、怎样的多边形是正多边形? 2、怎样判定一个多边形是正多边形? ①各边相等 ②各角相等 的多边形叫做正多边形。
四.拓展练习 • 1、两个正六边形的边长分别是3和4,这两个正六边形的面积之比等于________ • 2.圆内接正方形的半径与边长的比值是________ • 3.圆内接正四边形的边长为4 cm,那么边心距是________ • 4.已知圆内接正方形的边长为,则该圆 的内接正六边形边长为__________. • 5. 圆内接正六边形的边长是8 cm用么该正六边形的半径为________;边心距为________.
6、已知正多边形的边心距与边长的比是 ∶1,则此正多边形是( ) A.正三角形 B、正方形 C.正六边形 D正十二边形 • 7.以下有四种说法:①顺次连结对角线相等的四边形各边中点,则所得的四边形是菱形;②等边三角形是轴对称图形,但不是中心对称图形;③顶点在圆周上的角是圆周角;④边数相同的正多边形都相似,其中正确的有() A.1个 B.2个 C.3个 D 4个 • 8.正多边形的中心角与该正多边形一个内角的关系是() A.互余 B.互补 C.互余或互补 D.不能确定
9.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为( ) A.36° B、 18° C.72° D.54° • 10.将一个边长为a正方形硬纸片剪去四角,使它成为正n边形,那么正n边形的面积为( ) A、 • 11.正六边形螺帽的边长为a,那么扳手的开口b最小应是( ) A、
1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______. 2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______. 3、若正六边形的边长为1,那么正六边形的中心角是____度,半径是___,边心距是,它的每一个内角是______. 4、正n边形的一个外角度数与它的______角的度数相等. 中心 边心距 60 1 120° 中心
轴 5.正多边形一定是对称图形,一个正n边形共有条对称轴,每条对称轴都通过;如果一个正n边形是中心对称图形,n一定是数. 6.将一个正五边形绕它的中心旋转,至少要旋转度,才能与原来的图形位置重合. 7.两个正三角形的内切圆的半径分别为12和18,则它们的周长之比为,面积之比为. n 中心 偶 72 2﹕3 4﹕9
8.下列说法中正确的是( ) A.平行四边形是正四边形 B. 矩形是正四边形 C. 菱形是正四边形 D. 正方形是正四边形 9. 下列命题中,真命题的个数是( ) ①各边都相等的多边形是正多边形; ②各角都相等的多边形是正多边形; ③正多边形一定是中心对称图形; ④边数相同的正多边形一定全等. A.1 B.2 C. 3 D. 4 D A
10.已知正n边形的一个外角与一个内角的比为1﹕3,则n等于( ) A. 4 B. 6 C. 8 D. 12 11. 如果一个正多边形绕它的中心旋转90°就和原来的图形重合,那么这个正多边形是( ) A.正三角形 B.正方形 C.正五边形 D.正六边形 C B
12.正方形ABCD的外接圆圆心O叫做 正方形ABCD的 中心 13.正方形ABCD的内切圆的半径OE叫做 正方形ABCD的 边心距 A D .O E B C
6、⊙O是正五边形ABCDE的外接圆,弦AB的 弦心距OF叫正五边形ABCDE的 , 它是正五边形ABCDE的 圆的半径。 D E C .O A F B 边心距 内切 中心 7、 ∠AOB叫做正五边形ABCDE的 角, 它的度数是 72度
判断: 1.各边相等的圆内接多边形是正多边形( ) 2.各边相等的圆外切多边形是正多边形( ) 3.各角相等的圆内接多边形是正多边形( ) 4.各角相等的圆外切多边形是正多边形( )