200 likes | 299 Views
Probability and Theory Confirmation. Why making a prediction that is borne out makes a theory more probably true. Probability can be thought of as:. Objective chance Physical propensity Degree of belief Long-run frequency Degree of confirmation. The probability function p(A).
E N D
Probability and Theory Confirmation Why making a prediction that is borne out makes a theory more probably true
Probability can be thought of as: • Objective chance • Physical propensity • Degree of belief • Long-run frequency • Degree of confirmation
The probability function p(A) • Applies to events or propositions A • Yields as output a real number in [0,1] • Linearizes what is otherwise a partial ordering of the propositions • … and must therefore satisfy certain constraints
Constraints on p(A) • 0 p(A) 1 • If |– A , then p(A)=1 • If A |– , then p(A)=0 • If A |– B , then p(A) p(B)
Lemma 1A |– B B |– Ap(A)=p(B). Proof: By (4) we have p(A)p(B) and p(B)p(A). By anti-symmetry of ,we have p(A)=p(B).
Definition If 0<p(B) then p(A|B)=p(AB)/p(B)
Theorem 1 (Bayes)0<p(A) 0<p(B)p(A|B)=p(B|A).p(A)/p(B) Under the hypotheses we have, by definition, p(AB)=p(A|B).p(B) and p(BA)=p(B|A).p(A). By Lemma 1, p(AB)=p(BA). Hence p(A|B).p(B)=p(B|A).p(A). Dividing both sides by p(B), the result follows.
Lemma 20<p(B) B |– A0<p(A). Proof: Suppose B|–A. By (4), p(B) p(A). Now suppose 0<p(B). It follows that 0<p(A).
Theorem 20<p(CB) 0<p(AB)p(A|CB).p(C|B)=p(C|AB).p(A|B) Proof: Suppose 0<p(CB). Note CB|–B. By Lemma 2, 0<p(B). By Lemma 1, p(ACB)=p(CAB). Hence p(ACB)/p(B) = p(CAB)/p(B). Hence p(ACB).p(CB)/p(CB).p(B) = p(CAB).p(AB)/p(AB).p(B). By definition, p(A|CB).p(C|B)=p(C|AB).p(A|B)
Lemma 3B |– A 0<p(B)p(A|B)=1. Proof: Suppose B|–A. Then B is interdeducible with AB. So by Lemma 1 we have p(B)=p(AB). By definition we have p(A|B)=p(AB)/p(B). Substituting, p(A|B)=p(B)/p(B)=1.
Lemma 4A,B |– C 0<p(AB)p(C|AB)=1. Proof: Suppose A,B|–C. Then AB|–CAB. Also, CAB|–AB. So by Lemma 1 we have p(CAB)=p(AB). By definition we have p(C|AB)=p(CAB)/p(AB). Substituting, p(C|AB)=p(AB)/p(AB)=1.
Corollary 1A,B |– C 0<p(CB) 0<p(AB)p(A|CB).p(C|B)=p(A|B). Proof: The two inequalities mean Theorem 2 applies. So p(A|CB).p(C|B)=p(C|AB).p(A|B). But now the deducibility hypothesis means that the factor p(C|AB)=1. The result follows.
Theorem 30<p(HK) H,K |– E p(E|K)<1p(H|EK)>p(H|K). Proof: P(E|HK) exists. Since H,K|–E, we have (by Lemma 4) p(E|HK)=1. We also have HK|–EK. By (4), p(HK) p(EK). But 0<p(HK). So 0<p(EK). Now Theorem 2 applies: p(H|EK).p(E|K)=p(E|HK).p(H|K). Putting p(E|HK)=1, we get p(H|EK).p(E|K)=p(H|K). But p(E|K)<1. So p(H|EK)>p(H|K).
Title/claim • Comment 1 • Comment 2
Title/claim • Comment 1 • Comment 2
Title/claim • Comment 1 • Comment 2
Title/claim • Comment 1 • Comment 2
Title/claim • Comment 1 • Comment 2
Title/claim • Comment 1 • Comment 2