1 / 14

BRANCH-AND-BOUND STRATEGY

BRANCH-AND-BOUND STRATEGY. 呂卓燃. BRANCH AND BOUND STRATEGE. 用來找出最短路徑的問題 e.g. A multi-stage graph searching problem. Find a shortest path from V 0 to V 3. A TREE-REPRESENTATION. 一般的解法. V 0. 1. 2. 3. V 1.1. V 1.2. V 1.3. 5. 3. 4. 3. 2. 7. V 2.1. V 2.3. V 2.1. V 2.2. V 2.2.

gaia
Download Presentation

BRANCH-AND-BOUND STRATEGY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BRANCH-AND-BOUND STRATEGY 呂卓燃

  2. BRANCH AND BOUND STRATEGE • 用來找出最短路徑的問題 • e.g. • A multi-stage graph searching problem. • Find a shortest path from V0 to V3.

  3. A TREE-REPRESENTATION 一般的解法 V0 1 2 3 V1.1 V1.2 V1.3 5 3 4 3 2 7 V2.1 V2.3 V2.1 V2.2 V2.2 V2.3 4 1 4 1 1 1 V3 V3 V3 V3 V3 V3 10 5 11 7 5 10

  4. SOLVED BY BRANCH –AND-BOUND FIND A SHORTEST PATH 用 branch and bound 的策略可找到最短路徑為5, 因此,第一條路徑 6 已經大於 5,就不用接下去做, 用這樣的方式可以執行節省時間 V0 a 1 2 3 V1.1 V1.2 V1.3 b c d 5 3 4 3 2 7 V2.1 V2.3 V2.1 V2.2 V2.2 V2.3 e f h i j k 6>5 6>5 7>5 9>5 1 1 V3 V3 g l 5 5

  5. PERSONNEL ASSIGNMENT PROBLEM • A linearly ordered set of persons P={P1, P2, …, Pn} where P1<P2<…<Pn • A partially ordered set of jobs J={J1, J2, …, Jn} • Suppose that Pi and Pj are assigned to jobs f(Pi) and f(Pj) respectively. If f(Pi) ≤ f(Pj), then Pi ≤ Pj. Cost Cij is the cost of assigning Pi to Jj. We want to find a feasible assignment with the minimum cost. i.e. • Xij = 1 if Pi is assigned to Jj • Xij = 0 otherwise. • Minimize ∑i,j CijXij

  6. TOPOLOGICALLY SORTED • 假設在 G=(V,E),對於任何 (Vi , Vj ) 為 G 的有向邊, 也就是存在一條路徑從 Vi 到 Vj ,則在走訪G的所有 頂點時,頂點 Vi 一定會在 Vj 的前面,這種走訪順序 就稱為拓樸排序。 • 拓樸排序的作法為: • 選擇一個入邊數為0的頂點輸出 • 將所有屬於該頂點的邊刪除

  7. TOPOLOGICALLY SORTED範例 • http://www.jcc.jx.cn/xinwen3/news/kj/flash/2009/0426/1302.htm

  8. J1, J1 J2, J2 J3, J4 ↓ J1, ↘ J2, ↓ J4, J3 J3 J4 J1, J3, J2, J4 J2, J1, J3, J4 J2, J1, J4 J3 假設J={ J1,J2,J3,J4} P={ P1,P2,P3,P4 } 一開始可以選 J1 和 J2 假如先選 J1 A partial ordering of jobs 把 J1 所連結的邊刪除 接著可以選 J2 和 J3 ,假設先選J2 再把J2連結的邊刪除 最後輸出J3和J4 All the topologically sorted sequence 依照上訴的步驟, 可以再選出以下幾組方式

  9. ALL POSSIBLE SOLUTIONS CAN BE REPRESENTED BY A SOLUTION TREE • 可把剛剛拓普排序的結果建成 Tree 0 1 2 2 3 1 3 4 2 4 3 4 3 4 3 4

  10. Cost matrix (-12)直覺上的意思是,第一個人分配到這四份工作 最少要付出12元,那麼我就先給第一個人12元, 其他(-26), (-3),(-10)也是一樣的意思。 Reduced cost matrix (-12) (-26) (-3) (-10) (-3)

  11. A reduced cost matrix can be obtained: subtract a constant from each row and each column respectively such that each row and each column contains at least one zero. • Total cost subtracted:12+26+3+10+3 = 54 • This is a lower bound of our solution.

  12. AN ENUMERATION TREE ASSOCIATED WITH THE REDUCED COST MATRIX 0 54 Person assigned 1 2 58 71 1 2 3 1 72 71 64 2 76 78 86 70 68 3 4 2 4 3 3 81 78 91 70 73 4 3 4 3 4 4

  13. Bounding of subsolutions 54 Person assigned 0 58 71 1 1 2 Node to be terminated 64 2 1 70 68 4 3 3 70 73 3 4 4

  14. Why subtract costs from matrix 0 Person assigned 0 1 2 19 29 1 2 3 1 59 55 51 2 66 68 76 60 58 3 4 2 4 3 3 81 78 91 70 73 4 3 4 3 4 4

More Related