1 / 36

but q & f vary 0 - 180 o & 0 - 360 o

z. Polar Coordinates. r 2 = x 2 + y 2 + z 2 x = r sin q cos f y = r sin q sin f z = r cos q r = (x 2 + y 2 + z 2 ) ½ q = Acos (z/r) f = Asin {y/( rsin q )}. r. q. f. x. but q & f vary 0 - 180 o & 0 - 360 o. dV = d t = r 2 sin q dr d f d q or …..

garan
Download Presentation

but q & f vary 0 - 180 o & 0 - 360 o

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. z Polar Coordinates r2 = x2 + y2 + z2 x = r sinqcosf y = r sinqsinf z = r cosq r = (x2 + y2+ z2)½ q = Acos(z/r) f = Asin{y/(rsinq)} r q f x but q & f vary 0 - 180o&0 - 360o dV = dt = r2sinqdrdfdqor ….. dV(shell) = dx • dy • dz = 4pr2sinqdrdfdq y

  2. CM - 2D – Particle on a ring “If a particle is confined to the xy plane, then it has angular momentum along the z axis. angular momentum: Lz = mvr Lz = x • py – y • px E = K + V = K = ½mv2 • (m/m)= p2/2m = Lz2/2mr2 = Lz2/2I moment of inertia: I = mr2

  3. QM - 2D – Particle on a ring “If a particle is confined to the xy plane, then it has angular momentum along the z axis. Ĺz = x • py – y • px= -iħ d( )/df ĤY= Ĺz2/2I Y = -ħ2/2I • d2Y/df2= EY y = Neimf N2 • ∫02p e-imfeimfdf= 1 y = (2p)-1/2eimf E = m2ħ2/2I quantum #, m (or ml ) = 0, ±1, ±2, ±3, ….

  4. 2D – Particle on a ring CM E = ½mv2 = p2/2m = J2/2I (I = mr2) QM E = L2/2I (I = mr2) L = hr/l = mlħ l = hr/L E = (mlħ)2/2I moon data m = 7.3 x 1022 kg v = 1,020 m s-1 r = 384000 km 1 revolution = 27.3 days y = (2p)-1/2eimf What is I? What is E (CM)? What is J? What quantum state ml?

  5. Two Particle Problems Goal - Separate problem into 2 distinct one-particle problems. Particle 1: Mass = m1+ m2 Position = center of mass XYZ e.g. X = (m1x1 + m2x2)/(m1 + m2) example: translational motion of diatomic molecule (O2) Particle 2: Mass = m = m1m2/(m1+ m2) Position = position of smaller particle relative to the center of mass use x, y, z or (best) polar coordinates; r, q, f example: rotation of 2 bodies attached at fixed distance (O2)

  6. Two Particle Problems e.g. H2 molecule e.g. H atom m1 = m1 + m2 ~ 2 amu m1 = m1 + m2 ~ 1 amu x = (m1x1 + m2x2)/(m1 + m2) x = (m1x1 + m2x2)/(m1 + m2) x1 = 0 x -1 +1 x1 ~ -1 x -1 +1 m2 = m1m2/(m1 + m2) = ½amu m2 = m1m2/(m1 + m2) ~ me xcm = 0 r2 = ½ bond distance = 0.60 Å xcm ~ -1 = -0.99891 r2 ~ r = 0.529 Å m2 = 1.67 x 1010-24 kg m2 = 9.04 x 10-28 kg

  7. 3D – rotations (fixed r) rigid rotor r2 = x2 + y2 + z2 x = r sinqcosf y = r sinqsinf z = r cosq r = (x2 + y2+ z2) q = Acos(z/r) f = Asin{y/(rsinq)} 0 – 180o q 0 - 360o r f dt = r2dr • sinqdq• df ˆ Ĥ= Ĺ2/2I + V Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ Ĺz = -iħ d( )/dfLz= mℓħ Ĥ= -ħ2/2I {d2( )/dq2 + cotq d( )/dq + 1/sin2q d2( )/df2} & cotq = cosq/sinq

  8. Yrot = FmlQl,ml After solving Ĥy= Eroty .... Ĥ= -ħ2/2I {d2( )/dq2 + cotq d( )/dq + 1/sin2q d2( )/df2} Ql,ml associated Legendre polynomials Q0,0= 2-1/2 Q1,0= (3/2)1/2cosq Q1,1= (3/4)1/2 sin q Q2,0= (5/8)1/2 (3cos2q - 1) Q2,1= (15/4)1/2 sin q cosq Q2,2= (15/16)1/2 sin2q Fml= (2p)-1/2 exp(imlf) where l= 0, 1, 2, … ml= -l, - l +1, - l +2, .... + l L = {ℓ(ℓ+ 1)}½ħ Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ Erot = Eq + Ef = {l(l + 1)-ml2}(ħ2/2I) + ml2(ħ2/2I) =l(l + 1)ħ2/2I I = mr2 Ĺz = -iħ d( )/df= mℓħ Lz = mℓħ degeneracy = 2l + 1

  9. Yrot = FmlQl,ml After solving Ĥy= Eroty .... Ĥ= -ħ2/2I {d2( )/dq2 + cotq d( )/dq + 1/sin2q d2( )/df2} Ql,ml associated Legendre polynomials Q0,0= 2-1/2 Q1,0= (3/2)1/2cosq Q1,1= (3/4)1/2 sin q Q2,0= (5/8)1/2 (3cos2q - 1) Q2,1= (15/4)1/2 sin q cosq Q2,2= (15/16)1/2 sin2q Fml= (2p)-1/2 exp(imlf) where l= 0, 1, 2, … ml= -l, - l +1, - l +2, .... + l degeneracy = 2l + 1 Erot = Eq + Ef = {l(l + 1)-ml2}(ħ2/2I) + ml2(ħ2/2I) =l(l + 1)ħ2/2I I = mr2 Eqfor E0,0 = 0 since Q0,0 = 2-1/2 and Erot = 0 + 0 = 0 Eqfor E1,0 = Ĥq = -ħ2/2I [d2( )/dq2+ cot q • d( )/dq]q = Eqq = -ħ2/2I • (3/2)1/2 [d2(cosq)/dq2+ cot q • d(cosq)/dq] = Eqq (cotq = cosq/sinq) = -ħ2/2I • (3/2)1/2 [-1- cosq/sinq• sinq] = (-ħ2/2I • -2) q = ħ2/I • q Eq = ħ2/I and Erot = ħ2/I + 0 = ħ2/I = (+1)ħ2/2I

  10. angular momentum l = 0 mℓ = 0 Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ Ĺz = -iħ d( )/df= mℓħ Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy. The overall angular momentum scalar value is determined by (Ĺ2)½ . L = 0 Lz = 0 Note that this is not a diagram indicating where the electron may be found. Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital) Has no z-component to its angular momentum – it is not confined to a circle.

  11. angular momentum l = 0, 1 Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ Ĺz = -iħ d( )/df= mℓħ L = 21/2 ħ Lz = +1ħ L = 0 Lz = 0 L = 21/2 ħ Lz = -1ħ Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy. The overall angular momentum scalar value is determined by (Ĺ2)½ .

  12. angular momentum l = 2 L = 61/2 ħ Lz = +2ħ L = 61/2 ħ Lz = +1ħ L = 61/2 ħ Lz = 0 L = 61/2 ħ Lz = -1ħ L = 61/2 ħ Lz = -2ħ

  13. The Hydrogen atom a 3D, 2 particle problem . yNis translational motion of H atom Y = yNye yeis electron motion relative to nucleus Spherical harmonics e(r, q, f)=()()R(r) “Radial function”

  14. e(r, q, f)=R(r)()() • Hamiltonian:Ĥy = Ky + Vy= Ey Force between two charges in vacuum F = q1 • q2/(4peo • r2) (N = kg m s-2) V = F • r = q1 • q2/(4peor)(J = kg m2 s-2) V = -Ze2/(4peor) Applies to H atom and any H-like ion with only 1 e-. K (R(r)()()) Vy • Ĥy = R Q F • -ħ2/2m [1/r2d(r2dy/dr)/dr + 1/(r2sinq) d(sinqdy/dq)/dq+ 1/(r²sin²q) d²y/df²] -Ze2/(4peor) • = Ey

  15. Spherical harmonics ()() These solutions are identical to the rigid rotor model ESH= ħ2l(l+ 1)/2mr2 Ĥ(r, q, f)= Ĥ(ℓ,mℓ()mℓ()) + Ĥ R(r) • Ĥy = -ħ2/2m [1/r2d(r2dy/dr)/dr + 1/(r2sinq) d(sinqdy/dq)/dq + 1/(r²sin²q) d²y/df²] - Ze2/(4peor) • reduces to …… ĤR = -ħ2/2m[1/r2•d(r2dR/dr)/dr + {ħ2l(l+1)/2mr2- Ze2/(4peor)}R

  16. Ĥ R = -ħ2/2m[1/r2•d(r2dR/dr)/dr + {ħ2l(l+1)/2mr2- Ze2/(4peor)}R As the solutions to the Q function already existed in the form of the associated Legendre Polynomials ….. An exact solution to the Hamiltonian for R exists using pre-existing mathematics ….. the associated Laguerre Polynomials • These solutions contain the quantum numbers (n and ℓ) such that …. • n = 1, 2, 3, ….. (principle quantum #) • ℓ = 0, 1, … n – 1 (angular momentum q# as in Q) • mℓ= -ℓ, -ℓ+1, … +ℓ (magnetic quantum number as in F and Q) n,ℓ,mℓ(r, q, f)=ℓ,mℓ()mℓ()Rn,ℓ(r)

  17. R(r) = radial function R = cst *(n-1)th order polynomial in r * e-Zr/2a a = 4peoħ2/me2(units = m) which happens to equal the Bohr orbit radii (0.529Å for H) n,ℓ,mℓ(r, q, f)=ℓ,mℓ()mℓ()Rn,ℓ(r) ĤR = -ħ2/2m [1/r2•d(r2dR/dr)/dr+ {ħ2l(l+1)/2mr2 - Ze2/(4peor)}R = ER E = - Z2e4m/(8eo2h2n2) eq 11.66

  18. What is ynlm? a = 4peoħ2/me2(units = m) y100= 1s = (p-½) • (Z/a)3/2 • exp(-Zr/a) y200= 2s = (32p)-½ • (Z/a)3/2 • {2-(Zr/a)} • exp(-Zr/a) y210= 2pz = (32p)-½ • (Z/a)5/2 • r • exp(-Zr/2a) • (cosq) y211= (64p)-½ • (Z/a)5/2 • r • exp(if) • exp(-Zr/2a) • sinq y21-1= (64p-½) • (Z/a)5/2 • r • exp(-if) • exp(-Zr/2a) • sinq If any 2 wave functions satisfy H and give the same E, then any linear combination of those 2 wave functions (renormalized) will also give the same E. 2px = 2-1/2(y211+ y21-1) 2py= -i2-1/2(y211 - y21-1) 2px = (32p)-½(Z/a)5/2• r • exp(-Zr/2a) • sincos 2py = (32p)-½(Z/a)5/2 • r • exp(-Zr/2a) • sinsin 2pz = (32p)-½(Z/a)5/2 • r • exp(-Zr/2a) • cos

  19. H-atom – Radial Functions 1s 2s 3s

  20. H-atom – Radial Functions 2p 3d 3p

  21. dV = dxdydz dV(cube) = dvxdvydvz = ? dr dV dV = 4p(r+dr)3/3 – 4pr3/3 = 4r2dr 4pr3/3 + 4pr2dr+ 4prdr2 + 4pdr3/3 dV = dxdydz = d = 4pr2dr sin d d

  22. r2R2 1s 3s Probability = r2R2  R2 r2R2 2s r/a Even though the radial function for s orbitals is maximal at r = 0 the r2 term in dt, drops the probability to 0 at the nucleus.

  23. Y1s= (p-½) • (1/a)3/2 • exp(-r/a) rmp= r when d (r2Y1s)dr = 0 = a 1s 3s r2R2 2s r/a

  24. r2R2 3p 2p 3d

  25. Ĥy = -ħ2/2m [1/r2d(r2dy/dr)/dr + 1/(r2sinq) d(sinqdy/dq)/dq + 1/(r²sin²q) d²y/df²] - Ze2/(4peor) = Eyand =E = -Z2e4m/(8eo2h2n2) eq 11.66 eV

  26. e(r, q, f)=()()R(r) Probability = ∫e* e dt =4p ∫r(r+dr) r2R dr• ∫q(q+dq) sin d• ∫f(f+df) d 1 = 4p ∫0∞ r2R dr• ∫0p sin d• ∫02p d = 1 1 1 prob = 4p ∫r(r+dr) r2R dr(over all space)

  27. 51 Probability = ∫e* e dt Prob = 4p ∫00.1Å r2R2dr = 4p ∫00.189a r2R2dr R2 = 4/a3 exp(-2r/a) R = 2 (1/a)3/2 exp(-r/a) Prob = 16p/a3∫00.189a r2exp(-2r/a) dr ∫ r2exp(-2r/a) dr= (-ar2 • e-2r/a)/2 – (-a • ò r e-2r/adr) = (-ar2 • e-2r/a)/2 – (-a • a2/4 • e-2r/a • (-2r/a – 1) ]00.189a Prob = 4p • 4/a3[(-ar2 • e-2r/a)/2 – (-a • a2/4 • e-2r/a • (-2r/a – 1)]00.189a

  28. What is an orbital? a one electron spatial wave function The shape of an orbital is the volume enclosed by a surface of constant probability density =  |2| d the size of the orbital depends on confidence level desired. e.g. .... 0r r2R dr * 0psinqQdq * 02p Fdf = 0.9 … says that the probability is 90% of finding e- within the distance r of the nucleus. r is different at different q & f angles for non s orbitals.

  29. y100/1s (p-1/2)(Z/a)3/2 exp(-Zr/a) y200/2s (32p)-1/2(Z/a)3/2 (2-Zr/a) exp(-Zr/2a) y21-1 (64p)-1/2 (Z/a)5/2sinqexp(-if) r exp(-Zr/2a) y211 (64p)-1/2 (Z/a)5/2sinq exp(if) r exp(-Zr/2a) 2px (32p)-1/2(Z/a)5/2 r exp(-Zr/2a) sinqcosf 2py (32p)-1/2(Z/a)5/2 r exp(-Zr/2a) sinqsinf y210/2pz (32p)-1/2(Z/a)5/2 r exp(-Zr/2a) cosq Prob =  |2| d 0r r2R dr * 0psinqQdq * 02p Fdf = 0.9 • (2px)2 (32p)-1(Z/a)5 r2 exp(-Zr/a) sin2qcos2f • (2py)2 (32p)-1(Z/a)5 r2 exp(-Zr/a) sin2qsin2f • (2pz)2 (32p)-1(Z/a)5 r2 exp(-Zr/a) cos2q

  30. Prob:  = 90 &  = 0 r22 r/a 2px 2s 2py & 2pz

  31. Prob:  = 90 &  = 90 r22 r/a 2py 2s 2px& 2pz

  32. Prob:  = 45 &  = 35 2s 2pz 1s r22 2px 2py r/a

  33. angular momentum l = 0 mℓ = 0 Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ Ĺz = -iħ d( )/df= mℓħ Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy. The overall angular momentum scalar value is determined by (Ĺ2)½ . L = 0 Lz = 0

  34. angular momentum l = 1 mℓ = 0 Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ Ĺz = -iħ d( )/df= mℓħ L = √2ħ Lz = 0 Note that this is not a diagram indicating where the electron may be found. Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital) Has no z-component to its angular momentum – it is not confined to a circle.

  35. angular momentum l = 0, 1 Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ Ĺz = -iħ d( )/df= mℓħ L = 21/2 ħ Lz = +1ħ L = 0 Lz = 0 L = 21/2 ħ Lz = -1ħ Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy. The overall angular momentum scalar value is determined by (Ĺ2)½ .

  36. angular momentum l = 2 L = 61/2 ħ Lz = +2ħ L = 61/2 ħ Lz = +1ħ L = 61/2 ħ Lz = 0 L = 61/2 ħ Lz = -1ħ L = 61/2 ħ Lz = -2ħ

More Related