1 / 45

HBase and Bigtable Storage

HBase and Bigtable Storage. Xiaoming Gao Judy Qiu Hui Li. Outline. HBase and Bigtable Storage HBase Use Cases Hands-on: Load CSV file to Hbase table with MapReduce Demo Search Engine System with MapReduce Technologies (Hadoop/HDFS/HBase/Pig). HBase Introduction.

garnet
Download Presentation

HBase and Bigtable Storage

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HBase and Bigtable Storage XiaomingGao Judy Qiu Hui Li

  2. Outline • HBase and Bigtable Storage • HBase Use Cases • Hands-on: Load CSV file to Hbase table with MapReduce • Demo Search Engine System with MapReduce Technologies (Hadoop/HDFS/HBase/Pig)

  3. HBase Introduction • HBase is an open source, distributed, sorted map modeled after Google’s BigTable • HBase is built on Hadoop: • Fault tolerance • Scalability • Batch processing with MapReduce • HBase uses HDFS for storage

  4. HBase Cluster Architecture • Tables split into regions and served by region servers • Regions vertically divided by column families into “stores” • Stores saved as files on HDFS

  5. Data Model: A Big Sorted Map • A Big Sorted Map • Not a relational database, no sql, • Tables consist of rows, each of which has a primary key (row key) • Each row has any number of columns: sortedMap<rowKey, List(sortedMap(Column, List(Value,TimeStamp))))>

  6. HBase VS. RDBMS

  7. When to Use HBase • Dataset Scale • Indexing huge amount of web pages in internet or genome data • Need data mining large social media data sets • Read/Write Scale • reads/writes are distributed as tables are distributed across nodes • Writes are extremely fast and require no index updates • Batch Analysis • Massive and convoluted SQL queries can be executed in parallel via MapReduce jobs

  8. Use Cases: • Facebook Analytics • Real-time counters of URLs shared, preferred links • Twitter • 25 TB of message every month • Mozilla • Store crashes report, 2.5 million per day.

  9. Programming with HBase • HBase shell • Scan, List, Create • Native Java API • Get(byte[] row, byte[] column, long ts, int version) • Non-Java Clients • Thrift server (Ruby, C++, PHP) • REST server • HBase MapReduce API • hbase.mapreduce.TableMapper; • hbase.mapreduce.TableReducer; • High Level Interface • Pig, Hive

  10. Hands-on HBase MapReduce Programming • HBase MapReduce API import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.util.Bytes;

  11. Hands-on: load CSV file into HBase table with MapReduce • CSV represent for comma separate values • CSV file is common file in many scientific fields such as flow cytometry in bioinformatics

  12. Hands-on: load CSV file into HBasetable with MapReduce • Main entry point of program public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if(otherArgs.length!= 2) { System.err.println("Wrong number of arguments: " + otherArgs.length); System.err.println("Usage: <csv file> <hbase table name>"); System.exit(-1); }//end if Job job = configureJob(conf, otherArgs); System.exit(job.waitForCompletion(true) ? 0 : 1); }//main

  13. Hands-on: load CSV file into HBasetable with MapReduce • Configure HBase MapReduce job public static Job configureJob(Configuration conf, String [] args) throws IOException { Path inputPath = new Path(args[0]); String tableName = args[1]; Job job = new Job(conf, tableName); job.setJarByClass(CSV2HBase.class); FileInputFormat.setInputPaths(job, inputPath); job.setInputFormatClass(TextInputFormat.class); job.setMapperClass(CSV2HBase.class); TableMapReduceUtil.initTableReducerJob(tableName, null, job); job.setNumReduceTasks(0); return job; }//public static Job configure

  14. Hands-on: load CSV file into HBasetable with MapReduce • The map function public void map(LongWritable key, Text line, Context context) throws IOException { // Input is a CSV file Each map() is a single line, where the key is the line number // Each line is comma-delimited; row,family,qualifier,value String [] values = line.toString().split(","); if(values.length != 4) { return; } byte [] row = Bytes.toBytes(values[0]); byte [] family = Bytes.toBytes(values[1]); byte [] qualifier = Bytes.toBytes(values[2]); byte [] value = Bytes.toBytes(values[3]); Put put = new Put(row); put.add(family, qualifier, value); try { context.write(new ImmutableBytesWritable(row), put); } catch (InterruptedException e) { e.printStackTrace(); } if(++count % checkpoint == 0) { context.setStatus("Emitting Put " + count); } } }

  15. Hands-on: steps to load CSV file into HBase table with MapReduce • Check Hbase installation in Ubuntu Sandbox • http://salsahpc.indiana.edu/ScienceCloud/virtualbox_appliance_guide.html • Echo $HBASE_HOME • Start Hadoop and Hbase cluster • Start-all.sh • Start-hbase.sh • Create hbase table with specified data schema • Hbase shell • Create “csv2hbase”,”f1” • Compile the program with Ant • cd “hbasetutorial” • Ant • Upload input.csv into HDFS • Hadoop dfs –mkdir input • Hadoop dfs –copyFromLocal input.csv input/input.csv • Run the program: /bin/hadoop jar dist/lib/cglHBaseSummerSchool.jar iu.pti.hbaseapp.CSV2HBase input/input.csv “csv2hbase” • Check inserted records in Hbase table • Hbase shell • Scan “csv2hbase”

  16. Hands-on: load CSV file into HBase table with MapReduce

  17. Extension: set HBase table as Input Using TableInputFormat and TableMapReduceUtil to use an HTable as input to a map/reduce job public static Job configureJob (Configuration conf, String [] args) throws IOException { conf.set(TableInputFormat.SCAN, TableMapReduceUtil.convertScanToString(new Scan())); conf.set(TableInputFormat.INPUT_TABLE, tableName); conf.set("index.tablename", tableName); conf.set("index.familyname", columnFamily); String[] fields = new String[args.length - 2]; for(inti = 0; i < fields.length; i++) { fields[i] = args[i + 2]; } conf.setStrings("index.fields", fields); conf.set("index.familyname", "attributes"); Job job = new Job(conf, tableName); job.setJarByClass(IndexBuilder.class); job.setMapperClass(Map.class); job.setNumReduceTasks(0); job.setInputFormatClass(TableInputFormat.class); job.setOutputFormatClass(MultiTableOutputFormat.class); return job; }

  18. Extension: write output to HBase table public static class Map extends Mapper<ImmutableBytesWritable, Result, ImmutableBytesWritable, Writable> { private byte[] family; private HashMap<byte[], ImmutableBytesWritable> indexes; protected void map(ImmutableBytesWritablerowKey, Result result, Context context) throws IOException, InterruptedException { for(java.util.Map.Entry<byte[], ImmutableBytesWritable> index : indexes.entrySet()) { byte[] qualifier = index.getKey(); ImmutableBytesWritabletableName = index.getValue(); byte[] value = result.getValue(family, qualifier); if (value != null) { Put put = new Put(value); put.add(INDEX_COLUMN, INDEX_QUALIFIER, rowKey.get()); context.write(tableName, put); }//if }//for }//map

  19. Big Data Challenge Peta 10^15 Tera 10^12 Giga 10^9 Mega 10^6

  20. Search Engine System with MapReduce Technologies • Search Engine System for Summer School • To give an example of how to use MapReduce technologies to solve big data challenge. • Using Hadoop/HDFS/HBase/Pig • Indexed 656K web pages (540MB in size) selected from Clueweb09 data set. • Calculate ranking values for 2 million web sites.

  21. Architecture for SESSS Apache Lucene Inverted Indexing System PHP script HBase Tables 1. inverted index table 2. page rank table Web UI HBase Hive/Pig script Apache Server on Salsa Portal Thrift client Thrift server Pig script Hadoop Cluster on FutureGrid Ranking System

  22. Demo Search Engine System for Summer School build-index-demo.exe (build index with HBase) pagerank-demo.exe (compute page rank with Pig) http://salsahpc.indiana.edu/sesss/index.php

  23. High Level Language: Pig Latin Hui Li Judy Qiu Some material adapted from slides by Adam Kawa the 3rd meeting of WHUG June 21, 2012

  24. What is Pig • Framework for analyzing large un-structured and semi-structured data on top of Hadoop. • Pig Engine Parses, compiles Pig Latin scripts into MapReduce jobs run on top of Hadoop. • Pig Latin is simple but powerful data flow language similar to scripting languages.

  25. Motivation of Using Pig • Faster development • Fewer lines of code (Writing map reduce like writing SQL queries) • Re-use the code (Pig library, Piggy bank) • One test: Find the top 5 words with most high frequency • 10 lines of Pig Latin V.S 200 lines in Java • 15 minutes in Pig Latin V.S 4 hours in Java

  26. Word Count using MapReduce

  27. Pig performance VS MapReduce Pigmix : pig vsmapreduce

  28. Word Count using Pig • Lines=LOAD‘input/hadoop.log’ AS (line: chararray); • Words = FOREACHLines GENERATE FLATTEN(TOKENIZE(line)) AS word; • Groups = GROUPWords BYword; • Counts = FOREACHGroups GENERATE group, COUNT(Words); • Results = ORDER Words BY Counts DESC; • Top5 = LIMIT Results 5; • STORE Top5 INTO /output/top5words;

  29. Who uses Pig for What • 70% of production jobs at Yahoo (10ks per day) • Twitter, LinkedIn, Ebay, AOL,… • Used to • Process web logs • Build user behavior models • Process images • Build maps of the web • Do research on raw data sets

  30. Pig Tutorial • Accessing Pig • Basic Pig knowledge: (Word Count) • Pig Data Types • Pig Operations • How to run Pig Scripts • Advanced Pig features: (Kmeans Clustering) • Embedding Pig within Python • User Defined Function

  31. Accessing Pig • Accessing approaches: • Batch mode: submit a script directly • Interactive mode: Grunt, the pig shell • PigServer Java class, a JDBC like interface • Execution mode: • Local mode: pig –x local • Mapreduce mode: pig –x mapreduce

  32. Pig Data Types • Concepts: fields, tuples, bags, relations, • A Field is a piece of data • A Tuple is an ordered set of fields • A Bag is a collection of tuples • A Relation is a bag • Simple Types • Int, long, float, double, boolean,nul, chararray, bytearry, • Complex types • Tuple Row in Database • ( 0002576169, Tome, 21, “Male”) • Data Bag  Table or View in Database {(0002576169 , Tome, 21, “Male”), (0002576170, Mike, 20, “Male”), (0002576171 Lucy, 20, “Female”)…. }

  33. Pig Operations • Loading data • LOAD loads input data • Lines=LOAD ‘input/access.log’ AS (line: chararray); • Projection • FOREACH… GENERTE … (similar to SELECT) • takes a set of expressions and applies them to every record. • Grouping • GROUP collects together records with the same key • Dump/Store • Dump displaysresults to screen, Store save results to file system • Aggregation • AVG, COUNT, COUNT_STAR, MAX, MIN, SUM

  34. How to run Pig Latin scripts • Local mode • Local host and local file system is used • Neither Hadoop nor HDFS is required • Useful for prototyping and debugging • MapReduce mode • Run on a Hadoop cluster and HDFS • Batchmode - run a script directly • Pig –x local my_pig_script.pig • Pig –x mapreducemy_pig_script.pig • Interactivemode use the Pig shell to run script • Grunt> Lines = LOAD ‘/input/input.txt’ AS (line:chararray); • Grunt> Unique = DISTINCT Lines; • Grunt> DUMP Unique;

  35. Hands-on: Word Count using Pig Latin • cd pigtutorial/pig-hands-on/ • tar –xf pig-wordcount.tar • cd pig-wordcount • pig –x local • grunt> Lines=LOAD‘input.txt’ AS (line: chararray); • grunt>Words = FOREACHLines GENERATE FLATTEN(TOKENIZE(line)) AS word; • grunt>Groups = GROUPWords BYword; • grunt>counts = FOREACHGroups GENERATE group, COUNT(Words); • grunt>DUMP counts;

  36. Sample: Kmeans using Pig Latin A method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean. Assignment step: Assign each observation to the cluster with the closest mean Update step: Calculate the new means to be the centroid of the observations in the cluster. Reference: http://en.wikipedia.org/wiki/K-means_clustering

  37. Kmeans Using Pig Latin PC = Pig.compile("""register udf.jar DEFINEfind_centroidFindCentroid('$centroids'); raw = load 'student.txt' as (name:chararray, age:int, gpa:double); centroided = foreach raw generate gpa, find_centroid(gpa) as centroid; grouped = group centroided by centroid; result = Foreachgrouped Generate group, AVG(centroided.gpa); store result into 'output'; """)

  38. Kmeans Using Pig Latin whileiter_num<MAX_ITERATION: PCB = PC.bind({'centroids':initial_centroids}) results = PCB.runSingle() iter = results.result("result").iterator() centroids = [None] * v distance_move = 0.0 # get new centroid of this iteration, calculate the moving distance with last iteration for i in range(v): tuple = iter.next() centroids[i] = float(str(tuple.get(1))) distance_move = distance_move + fabs(last_centroids[i]-centroids[i]) distance_move = distance_move / v; if distance_move<tolerance: converged = True break ……

  39. Embedding Python scripts with Pig Statements • Pig does not support flow control statement: if/else, while loop, for loop, etc. • Pig embedding API can leverage all language features provided by Python including control flow: • Loop and exit criteria • Similar to the database embedding API • Easier parameter passing • JavaScript is available as well • The framework is extensible. Any JVM implementation of a language could be integrated

  40. User Defined Function • What is UDF • Way to do an operation on a field or fields • Called from within a pig script • Currently all done in Java • Why use UDF • You need to do more than grouping or filtering • Actually filtering is a UDF • Maybe more comfortable in Java land than in SQL/Pig Latin P = Pig.compile("""register udf.jar DEFINEfind_centroidFindCentroid('$centroids');

  41. Hands-on Run Pig Latin Kmeans export PIG_CLASSPATH= /opt/pig/lib/jython-2.5.0.jar Hadoop dfs –copyFromLocal input.txt ./input.txt pig –x mapreduce kmeans.py pig—x local kmeans.py

  42. Hands-on Run Pig Latin Kmeans 2012-07-14 14:51:24,636 [main] INFO org.apache.pig.scripting.BoundScript - Query to run: register udf.jar DEFINE find_centroidFindCentroid('0.0:1.0:2.0:3.0'); raw = load 'student.txt' as (name:chararray, age:int, gpa:double); centroided = foreach raw generate gpa, find_centroid(gpa) as centroid; grouped = group centroided by centroid; result = foreach grouped generate group, AVG(centroided.gpa); store result into 'output'; Input(s): Successfully read 10000 records (219190 bytes) from: "hdfs://iw-ubuntu/user/developer/student.txt" Output(s): Successfully stored 4 records (134 bytes) in: "hdfs://iw-ubuntu/user/developer/output“ last centroids: [0.371927835052,1.22406743491,2.24162171881,3.40173705722]

  43. References: • http://pig.apache.org(Pig official site) • http://en.wikipedia.org/wiki/K-means_clustering • Docs http://pig.apache.org/docs/r0.9.0 • Papers: http://wiki.apache.org/pig/PigTalksPapers • http://en.wikipedia.org/wiki/Pig_Latin • Slides by Adam Kawa the 3rd meeting of WHUG June 21, 2012 • Questions?

  44. Acknowledgement

  45. HBase Cluster Architecture • Tables split into regions and served by region servers • Regions vertically divided by column families into “stores” • Stores saved as files on HDFS

More Related