60 likes | 243 Views
Section 4.5: Using Congruent Triangles. Goals. Use congruent ’s to prove other parts are congruent. Use congruent ’s to prove other geometric properties. Anchors. Identify and/or use properties of congruent and similar polygons Identify and/or use properties of triangles. Statements.
E N D
Section 4.5:Using Congruent Triangles Goals • Use congruent ’s to prove other parts are congruent. • Use congruent ’s to prove other geometric properties. Anchors • Identify and/or use properties of congruent and similar polygons • Identify and/or use properties of triangles
Statements Reasons Given: W is the midpoint of QS PQ TS and PW TWProve: PWQ TWS • W is the mdpt of QS, • PQ TS and PW TW • Given 2) QW SW 2) Def. of midpoint 3) PQW TSW 3) SSS 4) PWQ TWS • Corresponding Parts of Congruent Triangles are Congruent CPCTC
Statements Reasons Given: QRS is isosceles RT bisects QRS QRS is the vertex angle Prove: QT ST ) • QRS is isosceles • RT bisects QRS • Given 2) QRT SRT 2) bisector 3) QR RS 3) Property of Isosceles 4) RT RT 4) Reflexive 5) QRT SRT 5) SAS 6) QT ST 6) CPCTC
) ) Statements Reasons Given: B N RW bisects BNProve: O is the midpoint of RW ) ) • B N • RW bisects BN • Given 2) BOR WON 2) Vertical Angles 3) BO ON 3) Segment bisector 4) BRO NWO 4) ASA 5) RO OW 5) CPCTC 6) Definition of collinear 6) R, O, & W are collinear 7) Property of mdpt 7) O is the mdpt of RW
Statements Reasons Given: BN and RW bisect each otherProve: BR ║ WN ( ) ) ( • BN and RW bisect each other • Given 2) BOR WON 2) Vertical Angles 3) BO ON , RO OW 3) Segment bisectors 4) BRO NWO 4) SAS 5) B N 5) CPCTC 6) If alt int s are then the lines are ║ 6) BR ║ WN
2 4 3 1 Statements Reasons Given: 1 2 , FC bisects DCBProve: AFB EFD ) ) ) ) ) • 1 2 , • FC bisects DCB • Given 2) 3 4 2) Angle Bisector 3) FC FC 3) Reflexive 4) AFC EFC 4) AAS 5) AF EF 5) CPCTC 6) Vertical Angles 6) DFE AFB 7) ASA 7) AFB EFD