380 likes | 778 Views
Constraint Dynamics. Fortgeschrittene Methoden in der Moleküldynamik SS 05 Lars Petzold, Mattias Maneck. Overview. Introduction Theory SHAKE and RATTLE Summary Demonstration. Introduction. Simulation of biomolecules is complex High frequency motions (bonds)
E N D
Constraint Dynamics Fortgeschrittene Methoden in der Moleküldynamik SS 05 Lars Petzold, Mattias Maneck
Overview • Introduction • Theory • SHAKE and RATTLE • Summary • Demonstration Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Introduction • Simulation of biomolecules is complex • High frequency motions (bonds) • Low frequency motions (torsions angles) • Simulation time step is dictated by the highest frequency Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Introduction • Wish: Increase the time step without prejudicing the accuracy of the simulation. • High frequency motions are not needed • Fix high frequencyparts of the molecule. • Example: q2 q1 - q2 q1 Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Constraints q2 • Two kinds of time independent (scleronom) constraints • holonomic • non-holonomic d q1 g q2 d q1 g Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Constraints • a pendulum • length d • weight M • Newton Equation Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Lagrange equation • Lagrange equation • equation of motion Force field Cartesian coordinates Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Lagrange equation • Lagrange equation with constraints • equation of motion Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Example • a pendulum • equation of motion Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Example • a pendulum • three ways to solve the equation • coupled differential equations • polar coordinates • numerical integration Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Example • Coupled differential equations • differentiate the constraint two times on the time • inserting Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Example • polar coordinates Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Example • polar coordinates Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory – Example • polar coordinates • equation of motion Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Theory • Numerical integration is shown by Lars • like Verlets algorithm • Constraints are included in the Lagrange equation by adding the sum of all constraints • Differentiating the Lagrange equation gives the equation of motion, equal to Newtons equation. • Sometimes constraints can be avoided by generalizing coordinates. Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
SHAKEby J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen • Goal: • Use constraints to reduce number of degrees of freedom (df) example: N particles, with 3*N df, k constraints 3*N-k df remain • Compute constraints iteratively • Use Verlet algorithm to compute trajectory Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Constraints on … • Positions ( distances): Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Verlet + Constraints SHAKE Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Illustration of Fc Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Compute without constraints: • check constraints (e.g. i<->j) to correct : Computation of Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Computation of (cont‘) • Tolerance exceeded: Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
keeps bond-lengths rigid Avoids calculation of uninteresting motions increases timestep Speeds up computation Precision-factor: Adds „Δt 2“ to „ Δt 0“ terms No direct access to velocities Hard to implement NPT simulation Calculation of T over velocity SHAKE Pros & Cons Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
RATTLE by Hans Christian Andersen • Integration method: Velocity Verlet (VV) • VV involves velocities to the computation of the trajectory • extra hidden constraints on the velocities • Makes algorithm more accurate • NTP-ensemble simulation possible Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Velocity Verlet (VV) Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Constraints on … • Positions ( distances): • Time derivates of position constraints: Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
VV+Constraints RATTLE Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Computation of • Compute q without constraints: • check constraints (e.g. i<->j) to correct b: Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Computation of (cont‘) • Tolerance exceeded: Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Compute without constraints: Computation of • check hidden constraints (e.g. i<->j) to correct : Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Computation of (cont‘) • ToleranceHC exceeded: Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Example:Simulation of two water-molecules • Water model: SPC/E(Berendsen et al. ´87) • Used forces: Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Simulation:without constraints Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Simulation: SHAKE Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Simulation:SHAKE + „constraints-application“ Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
Summary • Constraints are included in the Lagrange equation by adding the sum of all constraints • SHAKE computes trajectory by only checking distances • RATTLE additionally considers velocities • RATTLE is more flexible than SHAKE Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05
References Papers: Shake: Journal of Computational Physics 23, 327-341 (1977) Numerical Integration of the Cartesian Equations of Motion of a System with Constraints; Molecular Dynamics of n-Alkanes Jean-Paul Ryckaert, Giovanni Cicotti, and Herman J. C. Berendsen Rattle: Journal of Computational Physics 52, 24-34 (1983) Rattle: A "Velocity" Version of the Shake Algorithm for Molecular Dynamics Calculations Hans C. Andersen Books: Leach, Molecular Modelling-Principles and Applications Allen, Computer Simulation of Liquids Frenkel, Understanding Molecular Simulation Matthias Maneck, Lars Petzold: Fortgeschrittene Methoden in der Moleküldynamik SS 05