1 / 40

Oxygénation tissulaire J. Duranteau Université Paris-Sud Hôpital de Bicêtre

Oxygénation tissulaire J. Duranteau Université Paris-Sud Hôpital de Bicêtre. Convection VO 2 = IC. (CaO 2 - CvO 2 ).10. Diffusion VO 2 = KO 2 (PvO 2 - PmitO 2 ). O 2. ATP. Fonction mitochondriale. Convection. Index cardiaque Hémoglobine Microcirculation. EO2 critique.

garrison
Download Presentation

Oxygénation tissulaire J. Duranteau Université Paris-Sud Hôpital de Bicêtre

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Oxygénation tissulaire J. Duranteau Université Paris-Sud Hôpital de Bicêtre

  2. Convection VO2 = IC. (CaO2 - CvO2).10 Diffusion • VO2 = KO2 (PvO2 - PmitO2) O2 ATP Fonction mitochondriale

  3. Convection • Index cardiaque • Hémoglobine • Microcirculation

  4. EO2 critique Lactate Consommation d’oxygène(mL/min/m2) 200 150 100 50 0 0 100 200 300 400 500 600 700 Transport en oxygène (mL/min/m2)

  5. Oxygen uptake(mL/min/m2) 300 0 0 200 400 600 800 1000 Oxygen delivery(mL/min/m2)

  6.  PCO2  H+  Temp  2,3-DPG Saturation d’oxygène(%) 100 50 0 0 20 40 60 80 100 PO2 (mmHg)

  7. Convection • Index cardiaque • Hémoglobine • Microcirculation

  8. Effet Fahraeus-Lindqvist Endothélium

  9. Hte micro/Hte macro 1,0 0,8 0,6 Artériel veineux 60 50 40 30 20 10 10 20 30 40 50 60 70 Diamètre du vaisseau m Lipowsky HH, Microvasc Res 19:297, 1980

  10. Van Der Linden P et al., Anesthesiology. 99:97-104, 2003.

  11. Leung JM et al., Anesthesiology. 93:1004-1010, 2000. • 55 volontaires sains au repos • Cathéters artériels radial et pulmonaire • Hémodilution normovolémique : Hb = 5,2 ± 0,5 g/dL (1h) • Détection ischémies myocardiques • 3 sujets : sous décalage ST transitoire et réversible sans Symptomatologie et sans conséquences péjoratives • Modifications apparues Hb 5-7 g/dL

  12. MAIS • Réanimation = malades avec ATCD cardio-vasculaires • Hypovolémie : baisse de viscosité et bas débits • Sepsis : altération microcirculatoire

  13. O2 extraction ratio 1.0 0.8 0.6 0.4 0.2 0.0 T T T T T With endothelial cells T T T T T T T T T T Without endothelial cells T T T 0 5 10 15 20 O2 delivery (mL/kg/min) Curtis SE et al. J Appl Physiol 79: 1352-1360. 1995.

  14. Endothelium

  15. RBC flux villus capillary (mm/s) RBC flux villus tip (mm/s) 500 300 400 200 300 200 100 100 0 0 0 60 min 0 60 min Low ETX (1.5 mg/kg) High ETX (1.5 mg/kg) Control Hemorrhage

  16. ETX + NE Control ETX + NE + Arg ETX RBC flux villus tip (mm/s) 500 400 300 200 100 0 0 60 120 min

  17. Convection VO2 = IC. (CaO2 - CvO2).10 Diffusion • VO2 = KO2 (PvO2 - PmitO2) O2 ATP Fonction mitochondriale

  18. PO2 extracellulaire ∆ PO2 O2 flux PO2 mitochondriale

  19. Convection VO2 = IC. (CaO2 - CvO2).10 Diffusion • VO2 = KO2 (PvO2 - PmitO2) O2 ATP Fonction mitochondriale

  20.  EPO  iNOS  HIF1  O2  Besoins métaboliques  GLUT-1 ATP VEGF  glycolyse

  21. 4 Normoxia Hypoxia or normoxia Normoxia 120 torr 22 or 120 torr 120 torr 3 Oxygen uptake (µmol/hr/million cells) 2 Normoxia Hypoxia 1 0 0 10 20 30 40 50 60 Time (hrs) P.T. Schumacker et al. Am.J. Physiol.L395-L402, 1993.

  22. Hypoxia 20 torr recovery 120 110 100 90 80 70 Total motion (% of control values) 60 50 40 30 20 10 0 0 60 120 180 240 300 360 420 Times (min) J. Duranteau et al. J. Biol. Chem. 273:11619-11624. 1998.

  23. ATP ADP AMP 20 15 Adenine nucleotide concentrations (nmoles/million cells) 10 5 0 0 20 40 60 80 100 Oxygen tension (torr) GRS Budinger et al.Am. J. Physiol. 270: L44-L53, 1996.

  24. Oxygen (µM) Succ ADP 350 µM 200 100 0 Mt NO 0.4 1.0 2.0 3.0 µM 0 5 10 15 Time (min) Takehara et al. Arch. Biochem. Biophys.323, 27-32, 1995.

  25. Oxygen (µM) Succ ADP 600 µM 200 100 0 Mt NO (0.8 µM) NO NO NO 0 5 10 15 Time (min) Takehara et al. Arch. Biochem. Biophys.323, 27-32, 1995.

  26. O2 consumption (ng.atom.min-1.mg-1) 1.8 1.4 1 0.6 0.2 0 Control LPS King C et al. Crit Care Med 1999; 27:2518-2524.

  27. µg MTT-FZ / mg DNA 100 80 60 40 20 0 Control LPS LPS + AGuanidine Unno N. Gastroenterology 1997; 113:1246-1257.

  28. Sham (n=5) Sepsis (n=5) H0 0.13 ± 0.01 0.09 ± 0.01 0.12 ± 0.01 H4 0.12 ± 0.01 0.07 ± 0.01 0.12 ± 0.01 H0 0.14 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 H4 0.11 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 VO2-PM VO2-Succi VO2-Asc-TMPD Mitochondrial oxygen consumption In permeabilized muscle fibers (µmol O2/h/mg) L ’Her E and Sebert P. AJRCCM 164. 1444-1447, 2001.

  29. % cells with depolarized mitochondria (% ∆m) 25 20 15 10 5 0 Control <72 h 7-10 d discharged 30 25 20 15 10 5 0 Adrie C et al. AJRCCM 2001; 164:389-395. Survivors Non-survivors

  30. Lésions microscopiques et altérations de la respiration mitochondriale Crouser et al. Crit Care Med 2002; 30: 276-284

  31. Lésions microscopiques et altérations de la respiration mitochondriale Crouser et al. Crit Care Med 2002; 30: 276-284

  32. D. Brealy et al. The lancet 360, 20, 2002.

  33. D. Brealy et al. The lancet 360,20,2002.

More Related