1 / 24

Programming Languages and Compilers (CS 421)

Programming Languages and Compilers (CS 421). Elsa L Gunter 2112 SC, UIUC http://www.cs.uiuc.edu/class/sp07/cs421/. Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha. Type Inference - The Problem.

garron
Download Presentation

Programming Languages and Compilers (CS 421)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Programming Languages and Compilers (CS 421) Elsa L Gunter 2112 SC, UIUC http://www.cs.uiuc.edu/class/sp07/cs421/ Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

  2. Type Inference - The Problem • Given an expression e, and a typing environment , does there exist a type  such that the judgment  |- e :  is valid - ie., follows from the typing rules?

  3. Type Inference - Outline • Begin by assigning a type variable as the type of the whole expression • Decompose the expression into component expressions • Use typing rules to generate constraints on components and whole • Recursively gather additional constraints to guarantee a solution for components • Solve system of constraints to generate a substitution • Apply substitution to orig. type var. to get answer

  4. Type Inference - Example • What type can we give to fun x -> fun f -> f x? • Start with a type variable and then look at the way the term is constructed

  5. Type Inference - Example • First approximate: [ ] |- (fun x -> fun f -> f x) :  • Second approximate: use fun rule [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ()

  6. Type Inference - Example • Third approximate: use fun rule [f :  ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (  )

  7. Type Inference - Example • Fourth approximate: use app rule [f : ; x : ] |- f :   [f : ; x : ] |- x :  [f :  ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (  )

  8. Type Inference - Example • Fifth approximate: use var rule [f :  ; x : ] |- f :   [f :  ; x : ] |- x :  [f :  ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (  );   ( ) .

  9. Type Inference - Example • Sixth approximate: use var rule [f :  ; x : ] |- f :   [f :  ; x : ] |- x :  [f :  ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (  );   ( );   

  10. Type Inference - Example • Done building proof tree; now solve! [f :  ; x : ] |- f :   [f :  ; x : ] |- x :  [f :  ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (  );   ( );   

  11. Type Inference - Example • Type unification; solve like linear equations; [f :  ; x : ] |- f :   [f :  ; x : ] |- x :  [f :  ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (  );   ( );   

  12. Type Inference - Example • Eliminate : [f :  ; x : ] |- f :   [f :  ; x : ] |- x :  [f :  ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (  );   ( );   

  13. Type Inference - Example • Next eliminate  : [f : ; x : ] |- f :   [f :  ; x : ] |- x :  [f : ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) :  [ ] |- (fun x -> fun f -> f x) :  •   ();   (()  );   ( ) ;

  14. Type Inference - Example • Next eliminate  : [f : ; x : ] |- f :   [f :  ; x : ] |- x :  [f : ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) : (() ) [ ] |- (fun x -> fun f -> f x) :  •   ((() ));   (() );

  15. Type Inference - Example • Next eliminate  : [f : ; x : ] |- f :   [f :  ; x : ] |- x :  [f : ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) : (() ) [ ] |- (fun x -> fun f -> f x) : ( (() )) •   ((() ));

  16. Type Inference - Example • No more equations to solve; we are done [f : ; x : ] |- f :   [f :  ; x : ] |- x :  [f : ; x : ] |- (f x) :  [x : ] |- (fun f -> f x) : (() ) [ ] |- (fun x -> fun f -> f x) : ( (() )) • Any instance of ( (() ))is a valid type

  17. Type Inference - The Problem • Given an expression e, and a typing environment , does there exist a type  such that the judgment  |- e :  is valid - ie., follows from the typing rules?

  18. Type Inference Algorithm Let has_type (, e, ) = S •  is a typing environment • e is an expression •  is a (generalized) type, • S is a set of equations between generalized types

  19. Type Inference Algorithm • Let has_type (, e, ) = S •  is a typing environment, • e is an expression, •  is a (generalized) type, • S is a set of equations between generalized types. Idea: S is the constraints on type variables necessary for  |- e :  • Let Unif(S) be a substitution of generalized types for type variables solving S • Solution: Unif(S)() |- e : Unif(S)()

  20. Type Inference Algorithm has_type (, exp, ) = • Case exp of • Var v --> return {  (v)} • Const c --> return {  } where  |- c :  by the constant rules • fun x -> e --> • Let ,  be fresh variables • Let S = has_type ([x: ]  , e, ) • Return {    }  S

  21. Type Inference Algorithm (cont) • Case exp of • App (e1e2) --> • Let  be a fresh variable • Let S1 = has_type(, e1,   ) • Let S2 = has_type(, e2, ) • Return S1  S2

  22. Type Inference Algorithm (cont) • Case exp of • let x = e1 in e2 --> • Let  be a fresh variable • Let S1 = has_type(, e1, ) • Let S2 = has_type([x: ]  , e2, ) • Return S1  S2

  23. Type Inference Algorithm (cont) • Case exp of • let rec x = e1 in e2 --> • Let  be a fresh variable • Let S1 = has_type([x: ]  , e1, ) • Let S2 = has_type([x: ]  , e2, ) • Return S1  S2

  24. Type Inference Algorithm (cont) • To infer a type, introduce type_of • Let  be a fresh variable • type_of (, e) = • Let S = has_type (, e, ) • Return Unif(S)() • Need an algorithm for Unif

More Related