1 / 9

Throughput and emissivity performance budgets

Throughput and emissivity performance budgets. Antonin Bouchez NGAO Team Meeting #5 March 7, 2007. Transmission spectra. Temp. Emission spectra. Spectrum (Krisciunas 1997). Sky. N/A. Sky. . +. Telescope primary (aluminum). Spectrum (Denton). 275.5 K. Telescope primary. . +.

garron
Download Presentation

Throughput and emissivity performance budgets

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Throughput and emissivity performance budgets Antonin Bouchez NGAO Team Meeting #5 March 7, 2007

  2. Transmission spectra Temp Emission spectra Spectrum (Krisciunas 1997) Sky N/A Sky  + Telescope primary (aluminum) Spectrum (Denton) 275.5 K Telescope primary  + … …  + AO window 1 surface 1 (broadband AR coat) Scalar (0.02) 275.5 K AO window surface 1  + AO window 1 bulk (15 mm CaF2) Spectrum (Klocek 1991) AO window bulk 275.5 K  + AO window 1 surface 2 (broadband AR coat) Scalar (0.02) AO window surface 2 TAO … = … = Total throughput Total background Method +

  3. K2AO Optical Design K2AO = $ [{id:'Keck M1', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'Keck M2', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'Keck M3', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'rotator M1', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'rotator M2', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'rotator M3', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'OAP1', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'DM', mat:'enh_alum', thk:-1.0, t:ao.t}, $ {id:'TTM', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'OAP2', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'IR Dich 1 S1', mat:'ir_dich_1', thk: 0.0, t:ao.t}, $ {id:'IR Dich 1 B', mat:'CaF2', thk:1.5e-2, t:ao.t}, $ {id:'IR Dich 1 S2', mat:'nir_ar', thk: 0.0, t:ao.t}, $ {id:'Inst win S1', mat:'nir_ar', thk: 0.0, t:ao.t}, $ {id:'Inst win B', mat:'CaF2', thk:1.0e-2, t:ao.t}]

  4. OAP Relay (IR) Optical Design OAPIR = $ [{id:'Keck M1', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'Keck M2', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'Keck M3', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'AO win S1', mat:'opt_ar', thk: 0.0, t:tel.t}, $ {id:'AO win B', mat:'CaF2', thk:1.5e-2, t:tel.t}, $ {id:'AO win S2', mat:'opt_ar', thk: 0.0, t:ao.t}, $ {id:'rotator M1', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'rotator M2', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'rotator M3', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'OAP1', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'DM', mat:'enh_alum', thk:-1.0, t:ao.t}, $ {id:'OAP2', mat:'prosilver', thk:-1.0, t:ao.t}, $ {id:'IR Dich 1 S1', mat:'ir_dich_1', thk: 0.0, t:ao.t}, $ {id:'IR Dich 1 B', mat:'CaF2', thk:1.5e-2, t:ao.t}, $ {id:'IR Dich 1 S2', mat:'nir_ar', thk: 0.0, t:ao.t}, $ {id:'Inst win S1', mat:'nir_ar', thk: 0.0, t:ao.t}, $ {id:'Inst win B', mat:'CaF2', thk:1.0e-2, t:ao.t}]

  5. Adaptive Secondary Optical Design ADSEC = $ [{id:'Keck M1', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'Adaptive M2', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'Keck M3', mat:'aluminum', thk:-1.0, t:tel.t}, $ {id:'Na Dich S1', mat:'na_dich', thk:-1.0, t:ao.t}, $ {id:'Inst win S1', mat:'nir_ar', thk: 0.0, t:ao.t}, $ {id:'Inst win B', mat:'CaF2', thk:2.0e-2, t:ao.t}]

  6. Verification of the model against NIRC2 Filter Predicted Measured J 16.07 14.9 H 13.66 13.6 K 13.46 12.24 L’ 3.75 2.91 Ms 1.03 -0.12 / = 1000 TAO = 277.5 K Black: Sky background Red: Background at science focal plane Sky background (mag/arcsec2)

  7. Signal-to-noise in the K band OAP relay Adaptive Secondary OAP relay TAO Bkgd. Limiting K mag. (5, 1h, S=0.5) 277.5 13.15 25.82 273.0 13.35 25.92 263.0 13.70 26.10 253.0 13.89 26.19 Adaptive Secondary TAO Bkgd. Limiting K mag. (5, 1 hr, S=0.5) 277.5 13.77 26.13 273.0 13.89 26.19 263.0 14.07 26.28 253.0 14.16 26.33 / = 2000 TAO = 277.5 K / = 2000 TAO = 273.0 K / = 2000 TAO = 263.0 K / = 2000 TAO = 253.0 K / = 2000 TAO = 253.0 K

  8. Transmission in the visible / = 1000 TAO = 277.5 K • Transmission ~0.45 in visible, due to inclusion of an ADC in the science path. • The temperature of the AO enclosure has no effect below 1.8 µm.

  9. Preliminary conclusions • An adaptive secondary designs start with an ~0.30 limiting magnitude advantage at K band (~0.25 in L band). • Once AO is cooled to <263 K, the thermal background is dominated by the telescope. We may want to consider higher reflectivity telescope coatings. • To do: • Include better coatings data. • Adopt more realistic optical designs (incl. MOAO). • Understand K2AO performance discrepancy. • More thorough SNR calculations OAP relay design, TAO = 263 K, / = 4000 Background after telescope M3 in blue.

More Related