1 / 17

Maths can be cool !!

Maths can be cool !!.

garydsmith
Download Presentation

Maths can be cool !!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Maths can be cool !! Y = 1.5sqrt(-abs(abs(x)-1)*abs(3-abs(x))/((abs(x)-1)*(3-abs(x))))(1+abs(abs(x)-3)/(abs(x)-3))sqrt(1-(x/7)^2)+(4.5+0.75(abs(x-.5)+abs(x+.5))-2.75(abs(x-.75)+abs(x+.75)))(1+abs(1-abs(x))/(1-abs(x))),-3sqrt(1-(x/7)^2)sqrt(abs(abs(x)-4)/(abs(x)-4)),abs(x/2)-0.0913722(x^2)-3+sqrt(1-(abs(abs(x)-2)-1)^2),(2.71052+(1.5-.5abs(x))-1.35526sqrt(4-(abs(x)-1)^2))sqrt(abs(abs(x)-1)/(abs(x)-1)) http://www.howtogeek.com/106221/

  2. Maths can be cool !!

  3. Coordinate Systems Cylindrical Spherical Rectangular

  4. q f z R z x y r f Coordinate Systems Cylindrical Spherical Rectangular Suitable coordinate system determined by symmetry

  5. q f z R z x y r f ^ ^ ^ ^ ^ ^ ^ ^ ^ q f f R x z z y r Coordinate Systems Cylindrical Spherical Rectangular Suitable coordinate system determined by symmetry

  6. x = rcosf y = rsinf r = (x2+y2) ^ f = tan-1(y/x) z z f x ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ f =-xsinf + ycosf r = xcosf + ysinf y = rsinf + fcosf x = rcosf - fsinf y r f f y ^ Cylindrical Rectangular ^ r -x x Cartesian  Cylinder z fixed 2D problem (x,y)  (r,f) f ^ ^ z out of paper plane

  7. z = Rcosq ^ z r = Rsinq ^ R R = (z2+r2) q f r q q = tan-1(r/z) z R q ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ q =-zsinq + rcosq r = Rsinq + qcosq R = zcosq + rsinq z = Rcosq - qsinq r f Cylindrical Spherical Cylinder  Sphere f fixed 2D problem (r,z)  (R,q) r ^ z R ^ q ^ f into paper plane

  8. z = Rcosq x = rcosf r = Rsinq y = rsinf R = (z2+r2) r = (x2+y2) = (z2 + x2 + y2) q = tan-1(r/z) f = tan-1(y/x) = tan-1([x2+y2]/z) = Rsinqcosf = Rsinqsinf Rectangular  Sphere

  9. q f z R z x y r f Coordinate Transformations Rectangular Cylindrical Spherical x = Rsinqcosf y = Rsinqsinf z = Rcosq q = cos-1(z/R) R = √(x2 + y2 + z2) f = tan-1(y/x) • x = rsinf • y = rcosf • r = (x2 + y2 + z2) • = tan-1(y/x)

  10. q f z R z x ^ ^ y r ^ ^ f x = Rsinqcosf + qcosqcosf - f sinf ^ ^ ^ ^ ^ ^ ^ ^ ^ y = r sin f + f cosf x = r cos f - f sinf r = R sin q + q cosq ^ ^ ^ ^ y = Rsinqsin f + qcosqsinf + f sinf ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ z = Rcosq - qsinq q f f R x z z y r Unit Vector Transformations Rectangular Cylindrical Spherical Similarly for the other way around

  11. dl = h1dx1x1 + h2dx2x2 + h3dx3x3 dz dl = dr r+ rdf f + dz z 2p h ∫ ∫ 0 0 a 2p h ∫ ∫ ∫ 0 0 0 Length, Area,Volume CYLINDER Vary r Vary f df rdf dr dr Vary z dV = rdrdfdz Side Area = r df dz = 2prh Volume = rdr df dz = pa2h

  12. dl = h1dx1x1 + h2dx2x2 + h3dx3x3 dR R q dq Length, Area,Volume SPHERE Vary R Vary dq Rdq Vary df

  13. dl = h1dx1x1 + h2dx2x2 + h3dx3x3 dl = dR R+ Rdq q + Rsinqdff r = Rsinq q R p 2p ∫ ∫ 0 0 p a 2p ∫ ∫ ∫ 0 0 0 Length, Area,Volume SPHERE dV = dR.Rdq.Rsinqdf dR rdf Side Area = rdf.Rdq Rdq = R2 df sinqdq = 4pR2 Volume = dR.Rdq.Rsinqdf = R2dR. sinqdq. df = (4/3)pR3

  14. dl = dR R+ Rdq q + Rsinqdff ^ ^ ^ ^ ^ f r q f R dl = dr r+ rdf f + dz z Length, Area,Volume Where do these pre-factors come from? They arise because some unit vectors are themselves changing from point to point!! z y x

  15. ^ ^ ^ dr = dxx + dyy + dzz + xdx + ydy + zdz z ^ ^ ^ x y ^ ^ ^ x z y Length, Area,Volume ^ ^ ^ r = xx + yy + zz Rectangular

  16. ^ ^ r = rr + zz ^ ^ ^ r = xcosf + ysinf f = ycosf - xsinf ^ ^ ^ ^ dr = drr + rdr + dzz + zdz ^ ^ ^ ^ ^ f r ^ ^ ^ ^ ^ dl = dr r+ rdf f + dz z Length, Area,Volume z y dr = -xsinfdf + ycosfdf = (ycosf-xsinf)df = fdf x ^ The funny terms thus arise from the variation of the unit vector orientations !!

  17. q f z R z x y r f    Length, Area,Volume Spherical Rectangular Cylindrical dl2 = dR2 + R2df2 + R2sin2qdz2 dAr = (Rdq).(Rsinqdf) dAq= dR.(Rsinqdf) dAf = dR.Rdq dV = R2sinqdR.dq.df dl2 = dx2 + dy2 + dz2 dAz = dx.dy dAx= dy.dz dAy = dz.dx dV = dx.dy.dz dl2 = dr2 + r2df2 + dz2 dAz = dr.(rdf) dAr = dz.(rdf) dAf = dz.dr dV = rdr.df.dz 3 sets of surfaces

More Related