530 likes | 579 Views
Explore multidimensional quantum dynamics methods and applications in the study of chemical reactions. Topics include ESIPT in tautomerization, time-sliced simulations, electron tunneling, and more.
E N D
Tuesday, September 28th, 2004 - Physical Chemistry Seminar 11:00 a.m., Room 1315 Chemistry Building Department of Chemistry, University of Wisconsin-Madison Multidimensional Quantum Dynamics: Methods and Applications Xin Chen, Yinghua Wu and Victor S. Batista Department of Chemistry, Yale University, New Haven, CT 06520-8107 Xin Chen Yinghua Wu* *Current address: Department of Chemistry, Tulane University.
ESIPT in the keto-enolic tautomerization of 2-(2’-hydroxyphenyl)-oxazole (HPO). Changes in hybridization and connectivity Classical Dynamics (HPMO) Vendrell, O.; Moreno, M.; Lluch J.M.; Hammes-Schiffer, S. J. Phys. Chem. B 108, 6745 (2004) Quantum Dynamics (7-d simulation, related ESIPT system) Petkovic, M.; Kuhn, O. J. Phys. Chem. A 107, 8458 (2003) SC-IVR (HPO) Guallar, V.; Batista, V.S.; Miller, W.H. J. Chem. Phys. 113, 9510 (2000) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 143201 (2002) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 249903 (2002)
Computation of Observables Time Dependent Reactant Population: Absorption Spectrum: Time Dependent Survival Amplitude
Reaction Surface 35-dimensional Model V(r1,r2,z) = V0(r1,r2) + 1/2 [z- z0(r1,r2)] F(r1,r2) [z-z0(r1,r2)] V0 : Reaction surface r1,r2 : reaction coordinates z0 : ab initio geometries F : ab initio force constants
Reaction Coordinates in HPO r1: H-stretching
Reaction Coordinates in HPO r2: internal bending
Trotter Expansion MP/SOFT Method Wu,Y.; Batista, V.S. J. Chem. Phys. 118, 6720 (2003) Wu,Y.; Batista, V.S. J. Chem. Phys. 119, 7606 (2003) Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004) Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. submitted (2004) Wu,Y.; Batista, V.S. J. Chem. Phys. in prep. (2004)
Time-Dependent Survival Amplitude HK SC-IVR vs. MP/SOFT
Time-Dependent Survival Amplitude HK SC-IVR vs. Classical Wigner Wigner SC-IVR
Comparison with experimental data Douhal et.al. JPC 100, 19789 (1997), HPMO in n-hexane S1 S0
Early Time Relaxation Dynamics Time Dependent Reactant Population WIGNER, TD-SCF, HK SC-IVR, MP/SOFT
Longer Time Relaxation Dynamics Time Dependent Reactant Population WIGNER, TD-SCF, HK SC-IVR, MP/SOFT [1] [2] [1] Wu,Y.; Batista, V.S. J. Chem. Phys. in prep. (2004) [2] Guallar, V.; Batista, V.S.; Miller, W.H. J. Chem. Phys. 113, 9510 (2000)
Time Dependent Reactant Population HK SC-IVR, Classical Wigner (SC/L) and WKB
Comparison with experimental data Time dependent reactant (enol) population Femtosecond fluorescent transient at 420nm for HPMO in 3-methylpentane JPC 102,1657 (1998) Zewail and co-workers
Decoherence Dynamics HK SC-IVR vs. MP/SOFT [1] [2] [1] Wu,Y.; Batista, V.S. J. Chem. Phys. in prep. (2004) [2] Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 143201 (2002)
Development of new methodologies for studies of Decoherence and Coherent-Control
Coherent-Control of the keto-enolic isomerization in HPO Contour plot of the percentage product yield for bichromatic coherent-control at 100 fs after photoexcitation of the system, as a function of the laser controllable parameters.
Electron Tunneling in Multidimensional Systems Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004)
Benchmark calculation: 20-dimensional (model II)
Thermal Correlation Functions Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. submitted (2004) Boltzmann Ensemble Averages
Bloch Equation: MP/SOFT Integration Partition Function Boltzmann Matrix:
Calculations of Thermal Correlation Functions Position-Position Correlation Function: Time-Dependent Position Ensemble Average Model System:
Classical density Model System, cont’d Quantum density Ground State, V0 Excited State, V1