350 likes | 707 Views
Macro-zooplankton and PlankTOM10. Róisín Moriarty. Amphipod. Macro-zooplankton. Physalia physalis. Ctenophores. Krill/Euphausid. Pteropod. Salp blastozooid. Pelagic polychaete. Decapod nauplii. Chaetognath. Larvacean. Fish larvae. What are macro-zooplankton?. plankton
E N D
Macro-zooplankton and PlankTOM10 Róisín Moriarty
Amphipod Macro-zooplankton Physalia physalis Ctenophores Krill/Euphausid Pteropod Salp blastozooid Pelagic polychaete Decapod nauplii Chaetognath Larvacean Fish larvae
What are macro-zooplankton? • plankton • drifting organisms • horizontal position defined by the currents within the body of water the inhabit • zoo • animal • macro • >2000μm
The global carbon cycle • What factors control transport of carbon (CO2) from the surface to the deep ocean?
The global carbon cycle Oceanic sink for CO2 • solubility pump • dissolution in cold waters of high latitudes • transfer via ocean circulation • release in warm or upwelling regions
The global carbon cycle Natural carbon cycle • biologicalpump • C-fixation in the euphotic layer (primary production) • most is recycled • some is exported beneath (export production)
Macro-zooplankton in the global carbon cycle • Why am I interested in the role macro-zooplankton play in the carbon cycle?
Dynamic Green Ocean Models (DGOMs) • feedbacks between marine ecosystems and climate • understand • quantify • global biogeochemical model • PlankTOM10 • terrestrial equivalents • Dynamic Global Vegetation Models (DGVMs)
PlankTOM10 a dynamic green ocean model • explicit representations of ecosystem processes • account for changes caused by ecosystems • key questions • causes of glacial-interglacial changes in atmospheric trace gases and aerosols • change in oceanic uptake of CO2
NPZD and ecosystem models • NPZD • e.g., carbon export • simple box for phyto- and zoo-plankton • ecosystem • e.g., carbon to higher trophic levels • species specific • local or regional
Problems with NPZD and ecosystem models • detail • NPZD - not enough; ecosystem - too much • information • time and resources • different questions • change in nutrient supply • fisheries and higher predators
PlankTOM10 - A biogeochemical model • biology as Plankton Functional Types (PFTs) PlankTOM10 Marine Ecosystem • physical processes NEMO 2.3
PlankTOM10 - PFTs • Plankton Functional types (PFTs) represent biology • Biogeochemical processes are closely linked to PFT assemblages (Falkowski et al., 2003)
PFTs • Explicit biogeochemical role • Distinct set of physiological process rates or environmental conditions • Behaviour of one impacts on another • Quantitative importance in one or more areas of the world ocean
Macro-zooplankton and the global carbon cycle • How do macro-zooplankton function in the export of carbon from the surface layers of the ocean to the deep sea?
Macro-zooplankton and carbon export • fecal pellets • sink ~100s-1000s metres per day • escape recycling • discarded feeding apparatus • discarded body parts
Modelling macro-zooplankton and carbon export • characterise • physiological processes • trophic interactions • from • published results • >> round-up all available data
Modelling macro-zooplankton and carbon export • physiological processes • growth • respiration • excretion • egestion (fecal pellets) • mortality • trophic interaction • feeding preferences
PIC FIX COC PHA DIA MIX k k k k k k PRO k BAC k k POCs g0°C , K1/2, H, pF , aT MES k k grazing excretion, exudation & sloppy feeding 1 - ξ - MGE MGE 1 - σ MAC DOC ξ σ m0°C , bT feeding respiration mortality starvation DIC POCl
Validation of PlankTOM10 • reproduce mean state and variability • CO2, O2, N2O and DMS fluxes • reproduction of the seasonal cycle • chla in today’s oceans • macro-zooplankton validation • independent data set
Creating a macro-zooplankton validation data set • data search • COPEPOD NOAA (O'Brien 2005) • raw KRILLBASE (Atkinson et al. 2004) • abundance data • conversion from abundance to carbon • species specific conversions • abundance converted to carbon • all KRILLBASE data (SO) • ~5% COPEPOD data
Macro-zooplankton validation data set Macro-zooplankton abundance #/L Macro-zooplankton biomass μMC
Macro-zooplankton in PlankTOM10 Model macro-zooplankton biomass (μMC)
Macro-zooplankton observation vs. model Model macro-zooplankton biomass μMC Observation macro-zooplankton biomass μMC
Bill Sturges, Tim Jickelles and Alistair Crame Corinne Le Quéré, Erik Buitenhuis, Andrew Hirst and Eugene Murphy FAASIS students Thank you!
Final remarks • Further sensitivity analysis • Submit Thesis in May/June • Outputs • 1 data set submission • 3 papers from thesis chapters • contribution to synthesis paper on metabolic rates
Quick introduction • The Role of Macro-zooplankton in the Global Carbon Cycle • ~3 years • British Antarctic Survey, Cambridge
Physical processes • GCM - NEMO 2.3 (Madec 2008) • horizontal resolution • 2° longitude, 1.1° latitude • LIM - thermodynamic sea-ice model (Timmermann et al. 2005) • Mixing • turbulent kinetic energy model (Gaspar et al. 1990) • sub-grid eddy induced (Gent & McWilliams 1990)
PlankTOM10 • 39 biogeochemical tracers • full phosphate, silicate, carbon, oxygen & simplified iron cycles • phosphate, nitrate & ammonia fixed to Redfield ratio • nitrification & de-nitrification implicit in phosphate/ nitrate pool • dissolved compartments; inorganic nutrients, oxygen & alkalinity • detrital compartments; DOC, POCl, POCs,CaCO3, SiO2, Fe content of POCl