180 likes | 326 Views
Determining surface characteristics at candidate MSL landing sites using THEMIS high-resolution orbital thermal inertia data. Robin Fergason Philip Christensen MSL Landing Site Selection Workshop May 31, 2006. Thermal Inertia Background. Used to infer a particle size of the surface layer
E N D
Determining surface characteristics at candidate MSL landing sites using THEMIS high-resolution orbital thermal inertia data Robin Fergason Philip Christensen MSL Landing Site Selection Workshop May 31, 2006
Thermal Inertia Background • Used to infer a particle size of the surface layer • Helps to identify features, their location and extent on the surface, and their particle size • Detect exposed bedrock and dust
Ares Valles Exposed Bedrock 6.4 N Nili Patera 9.5 N Christensen et al., 2003a; 2005 Rogers et al., 2005 3.4 km 3.5 km 5.9 N 8.7 N 66.9 E 67.6 E 341.3 E 341.6 E 800 260 950 190 THEMIS-derived thermal inertia overlain onto THEMIS visible
Hebes Chasma Interior Layered Deposits TI: 125-145 TI: 190-245 TI: 275-360 TI: 290-420 125 615 800 m Fergason et al., submitted V10052001
I = (ρkc)1/2 ρ – bulk density k – conductivity c – specific heat Thermal inertia measures a material’s resistance to change in temperature Thermal Inertia Background
THEMIS-derived thermal inertia • Use thermal model developed by H. H. Kieffer • Ls, latitude, local time from spacecraft ephemeris • TES-derived albedo (8ppd) • MOLA-derived elevations (128 epd) • TES-derived dust opacity (2 ppd) every 30° Ls • Radiance at 12.57 μm (Band 9) is converted to brightness temperature, correcting for drift and wobble of the spacecraft • Interpolate upon a 7-D look-up table
THEMIS-derived Thermal Inertia Uncertainties • Uncertainties are primarily due to: (1) instrument calibration (2) uncertainties in model input parameters (3) thermal model uncertainties • Variations in thermal inertia within a single image are accurate and represent differences in the physical properties of the surface
Comparison with TES TES 40 N 40 S 180 E 180 E THEMIS 40 N 40 S 180 E 180 E Fergason et al., submitted 25 600
Comparison of Mini-TES and THEMISThermal Inertia 250 430 Fergason et al., 2006
Landing Site Characterization • Identify regions of very high or very low thermal inertia • TI > 400 likely has rocky surface [Nowicki, 2006] • TI < 100 is likely dusty and not drivable • Evaluate surface properties of the candidate landing sites • Predicted surface temperature for the primary mission • Rover design temperature limits: 145 - 310 K • Maximum diurnal temperature range: 145 K
26.8 N 26.3 N 62.6 E 63.2 E 175 570 Fergason et al., submitted
Thermal inertia is derived from THEMIS image The derived thermal inertia value is then used to calculate the surface temperature for a given local time and season Can predict the minimum surface kinetic temperature during the primary mission Predicting Surface Temperature
ASU Will Provide • Interpretations of THEMIS and TES thermal inertia data for all candidate landing sites • Thermal inertia mosaics of candidate landing site regions (100 m) • Relative thermal inertia values
ASU Will Provide • Individual thermal inertia images of specific areas of interest (100 m) • Thermal inertia values of specific morphologies • Predicted temperature maps of candidate landing site regions (100 m) • Predict range of temperatures • Derive maximum diurnal temperature range