1 / 56

Accessing transversity via single spin (azimuthal) asymmetries

COMPASS workshop Paris, March 2004. Accessing transversity via single spin (azimuthal) asymmetries. Universality of T-odd effects in single spin and azimuthal asymmetries, D. Boer, PM and F. Pijlman, NP B667 (2003) 201-241; hep-ph/0303034. P.J. Mulders Vrije Universiteit Amsterdam

gay
Download Presentation

Accessing transversity via single spin (azimuthal) asymmetries

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COMPASS workshop Paris, March 2004 Accessing transversity via single spin (azimuthal) asymmetries Universality of T-odd effects in single spin and azimuthal asymmetries, D. Boer, PM and F. Pijlman, NP B667 (2003) 201-241; hep-ph/0303034 P.J. Mulders Vrije Universiteit Amsterdam pjg.mulders@few.vu.nl

  2. Content • Soft parts in hard processes • twist expansion • gauge link • Illustrated in DIS • Two or more (separated) hadrons • transverse momentum dependence • T-odd phenomena • Illustrated in SIDIS and DY • Universality • Items relevant for other processes • Illustrated in high pT hadroproduction COMPASS p j mulders

  3. Soft physics in hard processes (e.g. inclusive deep inelastic leptoproduction) COMPASS p j mulders

  4. (calculation of) cross sectionDIS “Full” calculation + + + … PARTON MODEL +

  5. Lightcone dominance in DIS

  6. Leadingorder DIS • In limit of large Q2 the result of ‘handbag diagram’ survives • … + contributions from A+ gluons A+ Ellis, Furmanski, Petronzio Efremov, Radyushkin A+ gluons  gauge link COMPASS p j mulders

  7. Matrix elements <yA+y> produce the gauge link U(0,x) in leading quark lightcone correlator Color gauge link in correlator A+

  8. Distribution functions Soper Jaffe & Ji NP B 375 (1992) 527 Parametrization consistent with: Hermiticity, Parity & Time-reversal

  9. Distribution functions • M/P+ parts appear as M/Q terms in s • T-odd part vanishes for distributions but is important for fragmentation Jaffe & Ji NP B 375 (1992) 527 Jaffe & Ji PRL 71 (1993) 2547 leading part

  10. Distribution functions Selection via specific probing operators (e.g. appearing in leading order DIS, SIDIS or DY) Jaffe & Ji NP B 375 (1992) 527

  11. Lightcone correlatormomentum density Production matrix: y+ = ½ g-g+ y Sum over lightcone wf squared

  12. Basis for partons • ‘Good part’ of Dirac space is 2-dimensional • Interpretation of DF’s unpolarized quark distribution helicity or chirality distribution transverse spin distr. or transversity

  13. Bacchetta, Boglione, Henneman & Mulders PRL 85 (2000) 712 Matrix representationfor M = [F(x)g+]T Related to the helicity formalism Anselmino et al. • Off-diagonal elements (RL or LR) are chiral-odd functions • Chiral-odd soft parts must appear with partner in e.g. SIDIS, DY

  14. Summarizing DIS • Structure functions (observables) are identified with distribution functions (lightcone quark-quark correlators) • DF’s are quark densities that are directly linked to lightcone wave functions squared • There are three DF’s f1q(x) = q(x), g1q(x) =Dq(x), h1q(x) =dq(x) • Longitudinal gluons (A+, not seen in LC gauge) are absorbed in DF’s • Transverse gluons appear at 1/Q and are contained in (higher twist) qqG-correlators • Perturbative QCD  evolution COMPASS p j mulders

  15. Hard processes with two or more hadrons COMPASS p j mulders

  16. SIDIS cross section • variables • hadron tensor

  17. (calculation of) cross sectionSIDIS “Full” calculation + + PARTON MODEL + … +

  18. Lightfront dominance in SIDIS

  19. Lightfront dominance in SIDIS Three external momenta P Ph q transverse directions relevant qT = q + xB P – Ph/zh or qT = -Ph^/zh

  20. Leading order SIDIS • In limit of large Q2 only result of ‘handbag diagram’ survives • Isolating parts encoding soft physics ? ? COMPASS p j mulders

  21. Lightfront correlator(distribution) + Lightfront correlator (fragmentation) Collins & Soper NP B 194 (1982) 445 no T-constraint T|Ph,X>out =|Ph,X>in Jaffe & Ji, PRL 71 (1993) 2547; PRD 57 (1998) 3057

  22. Distribution A+ including the gauge link (in SIDIS) One needs also AT G+a = +ATa ATa(x)= ATa(∞) +dh G+a Belitsky, Ji, Yuan, hep-ph/0208038 Boer, M, Pijlman, hep-ph/0303034 From <y(0)AT()y(x)> m.e.

  23. Distribution A+ including the gauge link (in SIDIS or DY) SIDIS A+ DY SIDIS F[-] DY F[+]

  24. Distribution • for plane waves T|P> = |P> • But... T U[0, ]T = U[0,- ] • this does affect F[](x,pT) • appearance of T-odd functions in F[](x,pT) including the gauge link (in SIDIS or DY)

  25. Ralston & Soper NP B 152 (1979) 109 Parameterizations including pT Tangerman & Mulders PR D 51 (1995) 3357 Constraints from Hermiticity & Parity • Dependence on …(x, pT2) • Without T: • h1^ and f1T^ • nonzero! • T-odd functions • Fragmentation f  D g  G h  H • No T-constraint: H1^ and D1T^ nonzero!

  26. Ralston & Soper NP B 152 (1979) 109 Distribution functions with pT Tangerman & Mulders PR D 51 (1995) 3357 Selection via specific probing operators (e.g. appearing in leading order SIDIS or DY)

  27. Bacchetta, Boglione, Henneman & Mulders PRL 85 (2000) 712 Lightcone correlatormomentum density Remains valid for F(x,pT) … and also after inclusion of links forF[](x,pT) Sum over lightcone wf squared Brodsky, Hoyer, Marchal, Peigne, Sannino PR D 65 (2002) 114025

  28. Interpretation unpolarized quark distribution need pT T-odd helicity or chirality distribution need pT T-odd need pT transverse spin distr. or transversity need pT need pT

  29. Difference between F[+] and F[-] Integrate over pT

  30. Integrated distributions T-odd functions only for fragmentation

  31. Weighted distributions Appear in azimuthal asymmetries in SIDIS or DY These are process-dependent (through gauge link) and thus need in fact [±] superscript!

  32. reminder Matrix representationfor M = [F(x)g+]T Collinear structure of the nucleon!

  33. pT-dependent functions Matrix representationfor M = [F[±](x,pT)g+]T T-odd: g1T g1T – i f1T^ and h1L^  h1L^ + i h1^ Bacchetta, Boglione, Henneman & Mulders PRL 85 (2000) 712

  34. pT-dependent functions Matrix representationfor M = [D[±](z,kT) g-]T • FF’s: f  D g  G h  H • No T-inv constraints H1^ and D1T^ nonzero!

  35. pT-dependent functions Matrix representationfor M = [D[±](z,kT) g-]T • R/L basis for spin 0 • Also for spin 0 a T-odd function exist, H1^ (Collins function) e.g. pion • FF’s after kT-integration leaves just the ordinary D1(z)

  36. Summarizing SIDIS • Beyond just extending DIS by tagging quarks … • Transverse momenta of partons become relevant, appearing in azimuthal asymmetries • DF’s and FF’s depend on two variables, F[](x,pT) and D[](z,kT) • Gauge link structure is process dependent ( []) • pT-dependent distribution functions and (in general) fragmentation functions are not constrained by time-reversal invariance • This allows T-odd functions h1^ and f1T^ (H1^ and D1T^) appearing in single spin asymmetries COMPASS p j mulders

  37. T-odd effects in single spin asymmetries COMPASS p j mulders

  38. T-odd  single spin asymmetry • Wmn(q;P,S;Ph,Sh) = -Wnm(-q;P,S;Ph,Sh) • Wmn(q;P,S;Ph,Sh) = Wnm(q;P,S;Ph,Sh) • Wmn(q;P,S;Ph,Sh) = Wmn(q;P, -S;Ph, -Sh) • Wmn(q;P,S;Ph,Sh) = Wmn(q;P,S;Ph,Sh) symmetry structure hermiticity * _ _ _ _ _ _ parity _ _ _ _ _ _ time reversal * Conclusion: with time reversal constraint only even-spin asymmetries But time reversal constraint cannot be applied in DY or in 1-particle inclusive DIS or e+e-

  39. Example of a single spin asymmetry example:sOTO in ep epX • example of a leading azimuthal asymmetry • T-odd fragmentation function (Collins function) • involves two chiral-odd functions • Best way to get transverse spin polarization h1q(x) Collins NP B 396 (1993) 161 Tangerman & Mulders PL B 352 (1995) 129

  40. Single spin asymmetriessOTO • T-odd fragmentation function (Collins function) or • T-odd distribution function (Sivers function) • Both of the above also appear in SSA in pp  pX • Different asymmetries in leptoproduction! • But be aware now of [±] dependence Collins NP B 396 (1993) 161 Sivers PRD 1990/91 Boer & Mulders PR D 57 (1998) 5780 Boglione & Mulders PR D 60 (1999) 054007

  41. Process dependence and universality COMPASS p j mulders

  42. Difference between F[+] and F[-]  integrated quark distributions transverse moments measured in azimuthal asymmetries ±

  43. Difference between F[+] and F[-] gluonic pole m.e.

  44. Time reversal constraints for distribution functions T-odd (imaginary) Time reversal: F[+](x,pT)  F[-](x,pT) pFG F[+] F T-even (real) F[-] COMPASS p j mulders

  45. Consequences for distribution functions SIDIS F[+] DY F[-] F[](x,pT) = F(x,pT) ± pFG Time reversal 

  46. Distribution functions F[](x,pT) = F(x,pT) ± pFG Sivers effect in SIDIS and DY opposite in sign Collins hep-ph/0204004

  47. Time reversal constraints for fragmentation functions T-odd (imaginary) Time reversal: D[+]out(z,pT)  D[-]in(z,pT) pDG D[+] D T-even (real) D[-] COMPASS p j mulders

  48. Time reversal constraints for fragmentation functions T-odd (imaginary) Time reversal: D[+]out(z,pT)  D[-]in(z,pT) D[+]out pDG out D out T-even (real) D[-]out COMPASS p j mulders

More Related