420 likes | 589 Views
The PANDA Experiment at FAIR. Marco Destefanis Università degli Studi di Torino. for the PANDA Collaboration. Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013. Overview. Physics topics @ PANDA Form Factors Drell-Yan process and background Hypernuclei
E N D
The PANDA Experiment at FAIR Marco DestefanisUniversità degli Studi di Torino for the PANDA Collaboration Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013
Overview • Physics topics @ PANDA • Form Factors • Drell-Yan process and background • Hypernuclei • PANDA spectrometer • Summary
Future GSI andFacility for Antiproton and Ion Research • Primary beams: • Proton • Heavy Ions • Factor 100-1000 over present in intensity • Secondary Beams: • Radioactive beams • Antiprotons 3 - 30 GeV • 1-2 107 /s • Storage and Cooler Rings: • Radioactive beams • e – A collider • 1011 stored and cooled • 0.8 - 14.5 GeV antiprotons
High Energy Storage Ring HESR 1011 stored and cooled 0.8-15 GeV/c antiprotons Characteristics Pmax = 15 GeV/c Lmax = 2·1032 cm-2 s-1 Ø < 100 m p/p < 10-5 internal target Cooling: electron/stochastic High res. mode: L = 1031 cm-2 s-1p/p < 10-5 High lum. mode: L = 2·1032 cm-2 s-1 p/p < 10-4
Antiproton power pbar beams can be cooled -> excellent resonance resolution Preliminary expectation
The PANDA Physics • Confinement • Why are there no free quarks? • • Hadron mass • Where is the mass • of the proton coming from? • • Are there other color • neutral objects? • • What is the structure of • the nucleon? • • What are the spin degrees • of freedom? J. Ritman, Status of PANDA, 8th International Workshop on Heavy Quarkonium 2011
The PANDA Physics • Meson spectroscopy*: • D mesons • charmonium • glueballs, hybrids, • tetraquarks, molecules • Charmed and multi-strange • baryon spectroscopy* • Electromagnetic processes • (FF, pp→e+e-, pp→gg, Drell-Yan) • Properties of single and • double hypernuclei • Properties of hadrons in • nuclear matter * Presented by V. Mochalov
The PANDA Potential • All JPC allowed for qq are accessible in pp Formation • JPC not allowed for qq possible Production T. Johansson, PANDA at FAIR, Excited QCD 2012, Peniche (Portugal)
QCD Dynamics The experimental data set available is far from being complete. All strange hyperons and single charmed hyperons are energetically accessible in pp collisions at PANDA. In PANDA pp ΛΛ, ΛΞ, ΛΞ, ΞΞ , ΣΣ, ΩΩ, ΛcΛc, ΣcΣc, ΩcΩc can be produced allowing the study of the dependences on spin observables. By comparing several reactions involving different quark flavours the OZI rule and its possible violation, can be tested
p+pbar -> e+e- events generation L = 2 10 32cm-2 s-1 → 2 fb-1 in 100 days • Generator: • |GM| = 22.5 (1 + q2 / 0.71)-2 (1 + q2 / 3.6)-1 • = |GE|/|GM| • lowersensitivity • @ higher q2 M. Sudol et al., EPJ A44 (2010) 373 E. Tomasi-Gustafsson, M.P. Rekalo, PLB 504 (2001) 291
PANDA Scenario: Expected Results L = 2 10 32cm-2 s-1 → 2 fb-1 in 100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 PS170: G. Bardin et al., NPB 411 (1994) 3 pQCD inspired: V. A. Matveev et al., LNC 7 (1973) 719 S. J. Brodsky et al., PRL 31 (1973) 1153 VDM: F. Iachello, PLB 43 (1973) 191 Extended VDM: E.L.Lomon, PRC 66 (2002) 045501 R=|GE|/|GM| BaBAR PS170 Individual determination of |GE| and |GM| up to q2 14 (GeV/c)2 !! PANDA sim M. Sudol et al., EPJ A44 (2010) 373
PANDA Scenario: Expected Results L = 2 10 32cm-2 s-1 → 2 fb-1 in 100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Absolute accessible up to q2 28 (GeV/c)2 M. Sudol et al., EPJ A44 (2010) 373
PANDA Scenario: Asymptotic Behaviours L = 2 10 32cm-2 s-1 → 2 fb-1 in 100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Probing the Phragmèn-Lindelöf theorem: E. Tomasi-Gustafsson, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, Varenna, Italy, 15 - 19 Jun 2009, pp.447, arXiv:0907.4442v1 [nucl-th]
TMD: KT-dependent Parton Distributions Twist-2 PDFs Transversity Sivers Boer-Mulders
TMD PDF Investigation • Process SIDIS → convolution with FF Drell-Yan → PDF only pp annihilations: each valence quark can contribute to the diagram • Energies @ FAIR unique energy range up to s~30 GeV2 with PANDA up to s~200 GeV2 with PAX @ much higher energies → big contribution from sea-quarks
Drell-Yan Process • Drell-Yan: pp -> +-X Kinematics x1,2 = mom fraction of parton1,2 = x1• x2 = M2/s xF = x1 - x2 Collins-Soper frame Collins-Soper frame: Phys. Rev. D16(1977) 2219.
UNPOLARISED Drell-Yan Cross Section SINGLE-POLARISED . U = N(cos2φ>0) D = N(cos2φ<0) Asymmetry R.D. Tangerman and P.J. Mulders, Phys. Rev. D51, 3357-3372 (1995)
CERN NA51 450 GeV/c Fermilab E866 800 GeV/c Di-Lepton Production pp-> l+l-X R.S. Towell et al., Phys. Rev. D 64, 052002 (2001) A. Baldit et al., Phys. Lett. 332-B, 244 (1994)
Phase space for Drell-Yan processes x1,2 = mom fraction of parton1,2 = x1• x2 xF = x1 - x2 = const: hyperbolae xF = const: diagonal PANDA 1.5 GeV/c2 ≤ M ≤ 2.5 GeV/c2 PAX @HESR symmetric HESR collider 1
Drell-Yan Process and Background • Drell-Yan: pp -> +-X cross section 1 nb @ s = 30 GeV2 • Background: pp -> +-X, 2+2-X,…… cross section 20-30 b m = 105 MeV/c2; m 145 MeV/c2 average primary pion pairs: 1.5 • Background studies: needed rejection factor of 107
1 < qT < 2 GeV/c 2 < qT < 3 GeV/c DY Asymmetries @ Vertex UNPOLARISED SINGLE-POLARISED xP xP xP xP 500KEv included in asymmetries Acceptance corrections crucial! xP Physics Performance Report for PANDA arXiv:0903.3905 xP
) ) xP DY Asymmetries @ Vertex Statistical errors for 500KEv generated xP R = L·σ·ɛ = 2·1032cm-2s-1 × x 0.8·10-33cm2× 0.33 = 0.05 s-1~ 130 Kev/month xP Physics Performance Report for PANDA arXiv:0903.3905
n p X- p n n L p p L n e- n p p n X- Double Strange Systems 3 different systems contain double strangeness (S = -2) Exotic hyperatom: Interactions: X--nucleus: interplay between the Coulomb and nuclear potential From hyperatom to X-hypernucleus: X- absorption Doubly strange hypernucleus: Interactions: X-N From X-hypernucleus to LLhypernucleus: after X-NLL Double hypernucleus: Interactions: L-L STORI’11 - F. Iazzi Politecnico di Torino&INFN
e- n p p n X- Which Physics with Hyperatoms? • Stopped X- are capturedintoatomic (high) levels • X-undergoes an hyperatomiccascade • X-rays are emitted in the range 0÷1.2 MeV (12C) • Absorption from an atomic level into nucleus ends the atomic cascade • Bohr radius in lowest levels(n=2,3): ≈ 15 – 25 [fm] X-: M = 1.32132 [GeV/c2]; t = 16.39.10-11 [s];S = -2 in the region close to the nucleus: • Atomic orbitals overlap nucleus: Coulomb and Nuclear interaction shift the levels and broad them • shift and width can be measured (only last level ) X-ray spectroscopy (from X-) in the range: ≈ 0.1 – 1 [MeV] No existing data! STORI’11 - F. Iazzi Politecnico di Torino&INFN
Which Physics with ΛΛHypernuclei? Formed by X- p ΛΛ reaction inside nucleus • Physics (I):ΛΛ strong interaction (only possible in double hypernuclei) • Quarks: s-s interaction • YY potential: attractive/repulsive? In One Boson Exchange mechanism: ΛΛΛΛ : only nonstrange, I =0 meson exchange (w,h...) • hyperfragments distribution: dependence on YY potential • Physics (II):ΛΛ weak interaction (only possible in double hypernuclei) • Non Mesonic Hyperon Induced Decay: • ΛΛ Λ n : (expected ΓΛn << Γfree ) (pΛ/N = 433 MeV/c) • ΛΛ Σ-p : (expected ΓΣp << Γfree ) (pΣ/N = 321 MeV/c) B.E. • Measurements • Strong interaction: • DBΛΛ(AZΛΛ) = BΛΛ(AZΛΛ ) - 2BΛ(A-1ZΛ) (from g spectroscopy) • Weak interaction: • momentum of p from L decay • momentum of p from LL S –p • momentum of p– from L ,S-decay DBLL A STORI’11 - F. Iazzi Politecnico di Torino&INFN Several A data core of ΛΛ interaction n L p L p n
The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:0903.3905
The PANDA Detector STT Detectors • Detector requirements: • nearly 4 solid angle (partial wave analysis) • high rate capability (2·107 annihilations/s) • good PID (, e, m, p, K, p) • momentum resolution (~1%) • vertex info for D, K0S, L (cτ =123 mm for D0, p/m ≈ 2) • efficient trigger (e, m, K, D, L) • no hardware trigger (raw data rate ~ TB/s) Physics Performance Report for PANDA arXiv:0903.3905
The Micro-Vertex Detector FAIRNESS2012, L. Zotti
The Micro-Vertex Detector FAIRNESS2012, L. Zotti
Tracking Detectors I. Lehmann, Spin-Praha 2012
Cherenkov Detectors I. Lehmann, Spin-Praha 2012
Electromagnetic Calorimeters I. Lehmann, Spin-Praha 2012
Muon Detector System Iarocci Tubes working in proportional mode Ar+CO2 gas mixture Prototype ready FE electronics in production JINR - Dubna TDR for the PANDA Muon System, 2nd Draft (May 2011) MDT cross section MDT layout
Range System Prototype JINR - Dubna Muon Detector Layout
EMC MVD DIRC Particle Identification • PANDA PID Requirements: • particle identification essential for PANDA • momentum range 200 MeV/c – 10 GeV/c • Extreme high rates 2·107 Hz • good particle separation (K-e) • different detectors needed for PID STT Physics Performance Report for PANDA arXiv:0903.3905
PANDA Phyisics Performance Report All the details of the PANDA experimental program are reported in the “Physics Performance Report”. Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels. arXiv:0903.3905v1
Summary • PANDA physics program • unique program accessible with antiproton beams • addresses key questions • high discovery potential • high statistics and high precision results • Beginning in 2018