1 / 2

Robust DW representation: formal requirements

Robust DW representation: formal requirements. Standard platform- and software- independent template both computer and human- readable

gefen
Download Presentation

Robust DW representation: formal requirements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Robust DW representation: formal requirements • Standard platform- and software-independent template • both computer and human-readable • Can materialize DW into common open or vendor-specific documents or services (e.g. geodatabases, map services, SOAP services) from both local and remote data and models • Expresses how DW integrates different types of data objects from lower levels (data layers, services, real time streams, etc., processes and models, regulatory framework): various spatio-temporal or attribute join models (integration models) • Support DW analysys for completeness (data gaps), consistency (projections, formats, temporal reference), availability of integration models • ease of integration with other emerging digital representations (digital estuary, etc.) • compatibility with CI: ontology support, SOA-reliance, XML representation of sources. • evolving and flexible: ease of update as new knowledge or data sources become available

  2. Synthesis models in DW • Co-location in space: boundaries of most data layers are defined by watershed boundaries • Other types: based on functional relationships between watershed parameters (atmospheric, groundwater flows, underlying geology, as well as demographic and economic variables and processes that don’t necessarily coincide with natural boundaries). • For example: pointing to conditions upstream and downstream • DW representation must explicitly include the types of joins between different watershed elements, to make automatic instantiation and update of digital watersheds possible. DW as a system of integrated views.

More Related